找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
21#
發(fā)表于 2025-3-25 06:11:24 | 只看該作者
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory
22#
發(fā)表于 2025-3-25 10:51:12 | 只看該作者
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv
23#
發(fā)表于 2025-3-25 13:16:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:55 | 只看該作者
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
25#
發(fā)表于 2025-3-25 21:00:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:30:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:31:14 | 只看該作者
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.
29#
發(fā)表于 2025-3-26 12:54:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蛟河市| 瓮安县| 宁海县| 溆浦县| 栾川县| 金坛市| 普洱| 甘泉县| 淄博市| 五华县| 通榆县| 松潘县| 启东市| 上栗县| 如皋市| 菏泽市| 荔浦县| 葵青区| 绥化市| 台前县| 普格县| 张家川| 铁岭县| 崇左市| 丹巴县| 荥阳市| 万载县| 江油市| 子洲县| 会宁县| 论坛| 民丰县| 恭城| 洪泽县| 长治县| 元氏县| 昭苏县| 通江县| 沙坪坝区| 天柱县| 马关县|