找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復(fù)制鏈接]
樓主: ARRAY
21#
發(fā)表于 2025-3-25 06:07:35 | 只看該作者
Economic Remedies to Reduce SmokingThe purpose of this chapter is to describe monotone bases in r.i. spaces. If any contractive projection P satisfying the condition .. = .. is a conditional expectation, then such description can be given in terms of generalized Haar systems. We start in section 10.a with the characterization of r.i. spaces with the above mentioned property.
22#
發(fā)表于 2025-3-25 09:59:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:10 | 只看該作者
The Economics of Alfred MarshallIf the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
26#
發(fā)表于 2025-3-26 02:17:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2950-3A.M. Olevskii investigated some orthonormal system which is closely connected with the H.s.[212].
27#
發(fā)表于 2025-3-26 04:35:08 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:28 | 只看該作者
Convergence of Haar Series,One of the main propeties of the H.s. is that it forms a basis in ., .. (1 ≤ . < ∞) and moreover in a separable r.i. space. Any function χ.(.) (. > 1) is discontinuous. Therefore if . ∈ .[0,1], then the convergence ... to . is meant in ...
29#
發(fā)表于 2025-3-26 13:21:40 | 只看該作者
Basis Properties of the Haar System,Theorem 3.2 shows that the H.s. forms a basis in .., 1 ≤ p < ∞. This statement may be generalized.
30#
發(fā)表于 2025-3-26 17:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡南县| 巩留县| 霍邱县| 重庆市| 开阳县| 建湖县| 九江市| 隆昌县| 宜兴市| 南丰县| 三门峡市| 冀州市| 平湖市| 仪陇县| 南乐县| 新干县| 历史| 区。| 济宁市| 洪洞县| 兴安盟| 中方县| 宁安市| 临夏市| 邹平县| 昌黎县| 米泉市| 调兵山市| 孟州市| 虎林市| 安阳县| 神农架林区| 蓬溪县| 康平县| 衡阳县| 南丰县| 即墨市| 木兰县| 鸡西市| 区。| 丹巴县|