找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復(fù)制鏈接]
查看: 17972|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:43:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Haar Series and Linear Operators
編輯Igor Novikov,Evgenij Semenov
視頻videohttp://file.papertrans.cn/421/420358/420358.mp4
叢書(shū)名稱Mathematics and Its Applications
圖書(shū)封面Titlebook: Haar Series and Linear Operators;  Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma
描述In 1909 Alfred Haar introduced into analysis a remarkablesystem which bears his name. The Haar system is a complete orthonormalsystem on [0,1] and the Fourier-Haar series for arbitrarycontinuous function converges uniformly to this function. .This volume is devoted to the investigation of the Haar system fromthe operator theory point of view. The main subjects treated are:classical results on unconditional convergence of the Haar series inmodern presentation; Fourier-Haar coefficients;reproducibility; martingales; monotone bases in rearrangementinvariant spaces; rearrangements and multipliers with respect to theHaar system; subspaces generated by subsequences of the Haar system;the criterion of equivalence of the Haar and Franklin systems. ..Audience:. This book will be of interest to graduate students andresearchers whose work involves functional analysis and operatortheory.
出版日期Book 1997
關(guān)鍵詞DEX; Equivalence; Martingale; Monotone; Volume; boundary element method; continuous function; convergence; f
版次1
doihttps://doi.org/10.1007/978-94-017-1726-7
isbn_softcover978-90-481-4693-2
isbn_ebook978-94-017-1726-7
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書(shū)目名稱Haar Series and Linear Operators影響因子(影響力)




書(shū)目名稱Haar Series and Linear Operators影響因子(影響力)學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Haar Series and Linear Operators網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators被引頻次




書(shū)目名稱Haar Series and Linear Operators被引頻次學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators年度引用




書(shū)目名稱Haar Series and Linear Operators年度引用學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators讀者反饋




書(shū)目名稱Haar Series and Linear Operators讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:46 | 只看該作者
https://doi.org/10.1007/978-94-010-1073-3 known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
地板
發(fā)表于 2025-3-22 06:42:02 | 只看該作者
Causes of the Abuse of Illicit Drugs, to the H.s. Such operators are said to be multipliers. Recall that the norm of Λ from .. into .. (..) is denoted by ‖Λ‖.,. (‖Λ‖.). The main result of Chapter 5 (Corollary 5.8) may be formulated in the following way. If .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn%
5#
發(fā)表于 2025-3-22 11:14:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:45 | 只看該作者
The Unconditionality of the Haar system,ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs% 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai% aabeqaamaabaabauaakeaacqaH1oqz
8#
發(fā)表于 2025-3-23 00:19:03 | 只看該作者
Reproducibility of the Haar system, known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
9#
發(fā)表于 2025-3-23 02:22:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 长汀县| 长岛县| 思南县| 仪陇县| 肥城市| 潜江市| 湄潭县| 友谊县| 噶尔县| 南溪县| 综艺| 泰和县| 资阳市| 西充县| 乌鲁木齐县| 车险| 军事| 肃南| 凉城县| 漳平市| 东乌珠穆沁旗| 潜江市| 宿迁市| 丹东市| 清水县| 贵阳市| 仲巴县| 武鸣县| 长沙县| 开原市| 富平县| 繁昌县| 陈巴尔虎旗| 平顶山市| 宜黄县| 牟定县| 扬中市| 鹰潭市| 临夏市| 太和县|