找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復(fù)制鏈接]
查看: 17972|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:43:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Haar Series and Linear Operators
編輯Igor Novikov,Evgenij Semenov
視頻videohttp://file.papertrans.cn/421/420358/420358.mp4
叢書(shū)名稱Mathematics and Its Applications
圖書(shū)封面Titlebook: Haar Series and Linear Operators;  Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma
描述In 1909 Alfred Haar introduced into analysis a remarkablesystem which bears his name. The Haar system is a complete orthonormalsystem on [0,1] and the Fourier-Haar series for arbitrarycontinuous function converges uniformly to this function. .This volume is devoted to the investigation of the Haar system fromthe operator theory point of view. The main subjects treated are:classical results on unconditional convergence of the Haar series inmodern presentation; Fourier-Haar coefficients;reproducibility; martingales; monotone bases in rearrangementinvariant spaces; rearrangements and multipliers with respect to theHaar system; subspaces generated by subsequences of the Haar system;the criterion of equivalence of the Haar and Franklin systems. ..Audience:. This book will be of interest to graduate students andresearchers whose work involves functional analysis and operatortheory.
出版日期Book 1997
關(guān)鍵詞DEX; Equivalence; Martingale; Monotone; Volume; boundary element method; continuous function; convergence; f
版次1
doihttps://doi.org/10.1007/978-94-017-1726-7
isbn_softcover978-90-481-4693-2
isbn_ebook978-94-017-1726-7
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書(shū)目名稱Haar Series and Linear Operators影響因子(影響力)




書(shū)目名稱Haar Series and Linear Operators影響因子(影響力)學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Haar Series and Linear Operators網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators被引頻次




書(shū)目名稱Haar Series and Linear Operators被引頻次學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators年度引用




書(shū)目名稱Haar Series and Linear Operators年度引用學(xué)科排名




書(shū)目名稱Haar Series and Linear Operators讀者反饋




書(shū)目名稱Haar Series and Linear Operators讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:46 | 只看該作者
https://doi.org/10.1007/978-94-010-1073-3 known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
地板
發(fā)表于 2025-3-22 06:42:02 | 只看該作者
Causes of the Abuse of Illicit Drugs, to the H.s. Such operators are said to be multipliers. Recall that the norm of Λ from .. into .. (..) is denoted by ‖Λ‖.,. (‖Λ‖.). The main result of Chapter 5 (Corollary 5.8) may be formulated in the following way. If .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn%
5#
發(fā)表于 2025-3-22 11:14:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:45 | 只看該作者
The Unconditionality of the Haar system,ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs% 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai% aabeqaamaabaabauaakeaacqaH1oqz
8#
發(fā)表于 2025-3-23 00:19:03 | 只看該作者
Reproducibility of the Haar system, known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i
9#
發(fā)表于 2025-3-23 02:22:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白山市| 绍兴市| 绥棱县| 绵阳市| 介休市| 青河县| 武强县| 九龙坡区| 平乐县| 锦屏县| 五河县| 东丽区| 夹江县| 南充市| 福贡县| 萍乡市| 噶尔县| 新巴尔虎左旗| 隆安县| 东丰县| 长沙县| 彭阳县| 临朐县| 潼南县| 榆社县| 宁都县| 虞城县| 东乡族自治县| 温泉县| 正蓝旗| 神池县| 辉南县| 娄烦县| 浦江县| 十堰市| 金川县| 叶城县| 罗定市| 防城港市| 右玉县| 上思县|