找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復制鏈接]
樓主: ARRAY
21#
發(fā)表于 2025-3-25 06:07:35 | 只看該作者
Economic Remedies to Reduce SmokingThe purpose of this chapter is to describe monotone bases in r.i. spaces. If any contractive projection P satisfying the condition .. = .. is a conditional expectation, then such description can be given in terms of generalized Haar systems. We start in section 10.a with the characterization of r.i. spaces with the above mentioned property.
22#
發(fā)表于 2025-3-25 09:59:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:10 | 只看該作者
The Economics of Alfred MarshallIf the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
26#
發(fā)表于 2025-3-26 02:17:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2950-3A.M. Olevskii investigated some orthonormal system which is closely connected with the H.s.[212].
27#
發(fā)表于 2025-3-26 04:35:08 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:28 | 只看該作者
Convergence of Haar Series,One of the main propeties of the H.s. is that it forms a basis in ., .. (1 ≤ . < ∞) and moreover in a separable r.i. space. Any function χ.(.) (. > 1) is discontinuous. Therefore if . ∈ .[0,1], then the convergence ... to . is meant in ...
29#
發(fā)表于 2025-3-26 13:21:40 | 只看該作者
Basis Properties of the Haar System,Theorem 3.2 shows that the H.s. forms a basis in .., 1 ≤ p < ∞. This statement may be generalized.
30#
發(fā)表于 2025-3-26 17:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
仙桃市| 抚宁县| 太和县| 咸阳市| 浦江县| 永新县| 布尔津县| 石棉县| 留坝县| 沙坪坝区| 涞水县| 建平县| 仙游县| 达尔| 桂东县| 临江市| 广河县| 开封市| 民和| 安吉县| 哈密市| 隆回县| 沁水县| 江安县| 天津市| 新源县| 光泽县| 凤山市| 清流县| 莱西市| 招远市| 清水县| 政和县| 梁山县| 昂仁县| 通州区| 梨树县| 个旧市| 米脂县| 沿河| 永嘉县|