找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Inspection
11#
發(fā)表于 2025-3-23 11:30:20 | 只看該作者
Introduction,refully distinguish between “data” and “knowledge” in order to obtain clear notions that help us to work out why it is usually not enough to simply collect data and why we have to strive to turn them into knowledge. As an illustration, we consider a well-known example from the history of science. In
12#
發(fā)表于 2025-3-23 14:45:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:09 | 只看該作者
14#
發(fā)表于 2025-3-24 01:59:33 | 只看該作者
Data Understanding,ysis process, but data understanding should not be driven exclusively by the goals and methods to be applied in later steps. Although these requirements should be kept in mind during data understanding, one should approach the data from a neutral point of view. Never trust any data as long as you ha
15#
發(fā)表于 2025-3-24 02:36:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:38 | 只看該作者
Data Preparation,ations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see Chaps.?7ff), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Before we star
17#
發(fā)表于 2025-3-24 14:02:07 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:29 | 只看該作者
Finding Explanations, in order to group similar objects. In this chapter we will discuss methods that address a very different setup: instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses
19#
發(fā)表于 2025-3-24 21:35:07 | 只看該作者
Finding Predictors,e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
20#
發(fā)表于 2025-3-25 01:15:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉林市| 安多县| 门头沟区| 江达县| 大埔县| 广丰县| 新龙县| 宝鸡市| 丰镇市| 凯里市| 监利县| 德江县| 青铜峡市| 志丹县| 泽普县| 朝阳区| 朔州市| 徐州市| 建宁县| 栾川县| 泰和县| 阳原县| 民丰县| 安陆市| 辽宁省| 建始县| 长兴县| 灵台县| 南丰县| 平泉县| 慈利县| 墨玉县| 高安市| 宁明县| 东辽县| 宣恩县| 辉县市| 凯里市| 洛浦县| 景洪市| 邛崃市|