找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 9883|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:14:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Guide to Intelligent Data Analysis
編輯Michael R. Berthold,Christian Borgelt,Frank Klawon
視頻videohttp://file.papertrans.cn/391/390850/390850.mp4
叢書名稱Texts in Computer Science
圖書封面Titlebook: ;
出版日期Textbook 20101st edition
版次1
doihttps://doi.org/10.1007/978-1-84882-260-3
isbn_softcover978-1-4471-2572-3
isbn_ebook978-1-84882-260-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
issn_series 1868-0941
The information of publication is updating

書目名稱Guide to Intelligent Data Analysis影響因子(影響力)




書目名稱Guide to Intelligent Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Guide to Intelligent Data Analysis網(wǎng)絡(luò)公開度




書目名稱Guide to Intelligent Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Guide to Intelligent Data Analysis被引頻次




書目名稱Guide to Intelligent Data Analysis被引頻次學(xué)科排名




書目名稱Guide to Intelligent Data Analysis年度引用




書目名稱Guide to Intelligent Data Analysis年度引用學(xué)科排名




書目名稱Guide to Intelligent Data Analysis讀者反饋




書目名稱Guide to Intelligent Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:25 | 只看該作者
https://doi.org/10.1057/9780230582194pitfalls one encounters when analyzing real-world data. We start our journey through the data analysis process by looking over the shoulders of two (pseudo) data analysts, Stan and Laura, working on some hypothetical data analysis problems in a sales environment. Being differently skilled, they show
板凳
發(fā)表于 2025-3-22 03:32:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:07:49 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:22 | 只看該作者
The French: A Cross-cultural Comparison,ject understanding phase to revise objectives (or to stop the project). In the former case, we have to prepare the dataset for subsequent modeling. However, as some of the data preparation steps are motivated by modeling itself, we first discuss the principles of modeling. Many modeling methods will
6#
發(fā)表于 2025-3-22 16:48:39 | 只看該作者
Mark Burton,Carolyn Kagan,Pat Clementsations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see Chaps.?7ff), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Before we star
7#
發(fā)表于 2025-3-22 18:33:20 | 只看該作者
Florian Mayer,Dennis Schoeneborn the identification of areas that exceptionally deviate from the remainder. They provide answers to questions such as: Does it naturally subdivide into groups? How do attributes depend on each other? Are there certain conditions leading to exceptions from the average behaviour? The chapter provides
8#
發(fā)表于 2025-3-23 00:18:12 | 只看該作者
9#
發(fā)表于 2025-3-23 04:46:33 | 只看該作者
https://doi.org/10.1007/978-3-031-52399-1e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
10#
發(fā)表于 2025-3-23 08:23:22 | 只看該作者
The Measurement of Stratificationsures such as classification accuracy has been checked routinely whenever changes to the model were made to judge the advantageousness of the modifications. The models were also interpreted to gain new insights for feature construction (or even data acquisition). Once we are satisfied with the techn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒城县| 礼泉县| 永胜县| 平湖市| 伊春市| 洛南县| 宽甸| 满洲里市| 灵川县| 潍坊市| 巫溪县| 高碑店市| 新和县| 兴安盟| 资溪县| 拉孜县| 明光市| 汶上县| 华坪县| 黔西| 棋牌| 锡林郭勒盟| 宾阳县| 永仁县| 星座| 杭锦后旗| 潞城市| 盐城市| 萝北县| 潞城市| 巩留县| 峨眉山市| 罗甸县| 云霄县| 屏东市| 哈密市| 武穴市| 庐江县| 犍为县| 阜阳市| 永靖县|