找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: irritants
41#
發(fā)表于 2025-3-28 18:22:06 | 只看該作者
Quasithin Groups,f the finite simple groups. In January 1996, the authors began work toward a new and more general classification of quasithin groups; the paper gives an exposition of the approach and considerable progress to date.
42#
發(fā)表于 2025-3-28 20:34:55 | 只看該作者
43#
發(fā)表于 2025-3-28 23:53:00 | 只看該作者
The Residually Weakly Primitive Geometries of the Janko Group ,,,v-ity condition RWPRI: For each flag ., its stabilizer acts primitively on the elements of some type in the residue Γ.- We demand also that every residue of rank two satisfies the intersection property.
44#
發(fā)表于 2025-3-29 06:41:45 | 只看該作者
45#
發(fā)表于 2025-3-29 09:35:56 | 只看該作者
Affine Extended Dual Polar Spaces,pace and which possesses a flag-transitive automorphism group with a normal subgroup acting regularly on the set of elements of the leftmost type. We reduce the classification of affine extended dual polar spaces to calculation of the universal representation groups of classical dual polar spaces wi
46#
發(fā)表于 2025-3-29 14:31:20 | 只看該作者
47#
發(fā)表于 2025-3-29 17:46:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:58:33 | 只看該作者
49#
發(fā)表于 2025-3-30 03:36:35 | 只看該作者
Ovoids and Spreads Arising from Involutions,(.), but using some geometric properties of the hexagon and an involution. Remarking that a similar construction holds in certain quadrangles of order s, with . a power of 2, we obtain ovoids in quadrangles of type ..(.).
50#
發(fā)表于 2025-3-30 04:27:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳区| 望城县| 凤台县| 水城县| 延川县| 岢岚县| 韶山市| 土默特左旗| 略阳县| 遂平县| 龙陵县| 广宗县| 嵊泗县| 博爱县| 洞口县| 开平市| 太湖县| 东阿县| 无极县| 三河市| 九江县| 安宁市| 娱乐| 明光市| 镇原县| 洪泽县| 确山县| 九龙城区| 潞城市| 全椒县| 绥化市| 枣阳市| 随州市| 延津县| 长丰县| 伊春市| 东阳市| 玛多县| 兰考县| 西宁市| 清丰县|