找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 04:33:18 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
Perspectives of Photoemission Studies,We describe some recent results concerning regular orbits of quasisimple groups in coprime representations, and discuss an application to the .(.)-problem in modular representation theory.
26#
發(fā)表于 2025-3-26 00:22:06 | 只看該作者
27#
發(fā)表于 2025-3-26 06:14:29 | 只看該作者
Photoelectronic Imaging DevicesIn this note we discuss some recent results on the subgroup structure of exceptional groups obtained jointly with Martin Liebeck and some related projects in progress.
28#
發(fā)表于 2025-3-26 11:09:01 | 只看該作者
Analoge Informationsverarbeitung,A survey is given on embeddings in finite projective spaces of generalized polygons, polar spaces, partial quadrangles, partial geometries, semipartial geometries, dual semipartialgeometries and (0, α)-geometries.
29#
發(fā)表于 2025-3-26 14:46:34 | 只看該作者
Geschichtliche Entwicklung des Verfahrens,We give a geometric characterization of two classes of geometries related to the spin representation of the groups of type ... These geometries appear as quotient geometries of point-line spaces obtained from an ..-building by removing a geometric hyperplane.
30#
發(fā)表于 2025-3-26 19:54:03 | 只看該作者
The Non-canonical Gluings of two Affine Spaces,In this paper we determine the flag-transitive non-canonical gluings of two isomorphic desarguesian affine spaces. It turns out that there are fifteen sporadic examples and two infinite series. Moreover, we determine the universal covers of the fifteen sporadic gluings and of the canonical gluing.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒兰市| 新平| 渭南市| 桃江县| 循化| 遂平县| 岑巩县| 青浦区| 蚌埠市| 淄博市| 平凉市| 德保县| 南康市| 新巴尔虎左旗| 清水河县| 天气| 喀什市| 出国| 甘洛县| 无锡市| 曲松县| 阿鲁科尔沁旗| 德化县| 崇文区| 高陵县| 泰来县| 遵化市| 邓州市| 雷波县| 桂平市| 涪陵区| 高雄县| 越西县| 雅安市| 太白县| 南漳县| 陆河县| 惠东县| 高雄市| 临颍县| 河南省|