找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fitful
11#
發(fā)表于 2025-3-23 11:15:46 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:43 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:56 | 只看該作者
Spectral Theory of the Laplace Operator for Cocompact Groups,is a discrete cocompact group. We already know from the preceding Chapter that —Δ is essentially self-adjoint and positive on the subspace . ? L. (.IH) consisting of all ..-functions . ? ..(.IH) such that Δ. ∈ .. (.IH) . This means that the closure of the graph of Δ in .. (.IH) × .. (.IH) is the graph of a self-adjoint linear operator .
14#
發(fā)表于 2025-3-23 23:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:06 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:08 | 只看該作者
Membrane Models for Circadian Rhythms,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
17#
發(fā)表于 2025-3-24 12:44:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:05 | 只看該作者
Eisenstein Series for PSL(2) over Imaginary Quadratic Integers,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
19#
發(fā)表于 2025-3-24 20:46:29 | 只看該作者
Integral Binary Hermitian Forms,(1915), (1919a)—(1919e). It contains an interesting error, we correct it in Section 9.6. We also develop a theory of representation numbers of binary hermitian forms which is analogous to the theory of binary quadratic forms as in Landau (1927).
20#
發(fā)表于 2025-3-24 23:20:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼南县| 瓮安县| 靖宇县| 洪洞县| 达州市| 莲花县| 板桥市| 鹤庆县| 灌云县| 利川市| 永德县| 东城区| 四子王旗| 双桥区| 中宁县| 沁源县| 关岭| 稻城县| 威远县| 西林县| 五河县| 土默特左旗| 分宜县| 通化县| 师宗县| 婺源县| 城市| 金沙县| 巨鹿县| 镇坪县| 四川省| 澎湖县| 江西省| 通道| 武鸣县| 墨脱县| 太原市| 文昌市| 武威市| 宜兰市| 泸西县|