找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fitful
11#
發(fā)表于 2025-3-23 11:15:46 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:43 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:56 | 只看該作者
Spectral Theory of the Laplace Operator for Cocompact Groups,is a discrete cocompact group. We already know from the preceding Chapter that —Δ is essentially self-adjoint and positive on the subspace . ? L. (.IH) consisting of all ..-functions . ? ..(.IH) such that Δ. ∈ .. (.IH) . This means that the closure of the graph of Δ in .. (.IH) × .. (.IH) is the graph of a self-adjoint linear operator .
14#
發(fā)表于 2025-3-23 23:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:06 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:08 | 只看該作者
Membrane Models for Circadian Rhythms,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
17#
發(fā)表于 2025-3-24 12:44:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:05 | 只看該作者
Eisenstein Series for PSL(2) over Imaginary Quadratic Integers,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
19#
發(fā)表于 2025-3-24 20:46:29 | 只看該作者
Integral Binary Hermitian Forms,(1915), (1919a)—(1919e). It contains an interesting error, we correct it in Section 9.6. We also develop a theory of representation numbers of binary hermitian forms which is analogous to the theory of binary quadratic forms as in Landau (1927).
20#
發(fā)表于 2025-3-24 23:20:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 项城市| 信阳市| 九龙坡区| 辉县市| 永城市| 重庆市| 荃湾区| 策勒县| 曲麻莱县| 读书| 罗定市| 呼和浩特市| 宜阳县| 固安县| 临高县| 涞源县| 扬中市| 辰溪县| 宁强县| 宝清县| 烟台市| 汉阴县| 维西| 太仓市| 民权县| 策勒县| 历史| 前郭尔| 屏边| 遵化市| 仪征市| 焦作市| 诏安县| 郯城县| 原阳县| 全椒县| 阿拉善右旗| 崇文区| 万全县| 乐清市|