找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 21773|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:10:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Groups Acting on Hyperbolic Space
編輯Jürgen Elstrodt,Fritz Grunewald,Jens Mennicke
視頻videohttp://file.papertrans.cn/389/388990/388990.mp4
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: ;
出版日期Book 1998
版次1
doihttps://doi.org/10.1007/978-3-662-03626-6
isbn_softcover978-3-642-08302-0
isbn_ebook978-3-662-03626-6Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
The information of publication is updating

書目名稱Groups Acting on Hyperbolic Space影響因子(影響力)




書目名稱Groups Acting on Hyperbolic Space影響因子(影響力)學(xué)科排名




書目名稱Groups Acting on Hyperbolic Space網(wǎng)絡(luò)公開度




書目名稱Groups Acting on Hyperbolic Space網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Groups Acting on Hyperbolic Space被引頻次




書目名稱Groups Acting on Hyperbolic Space被引頻次學(xué)科排名




書目名稱Groups Acting on Hyperbolic Space年度引用




書目名稱Groups Acting on Hyperbolic Space年度引用學(xué)科排名




書目名稱Groups Acting on Hyperbolic Space讀者反饋




書目名稱Groups Acting on Hyperbolic Space讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:49 | 只看該作者
Aromatics as Electron Transfer Sensitizers,Three-dimensional hyperbolic space is the unique 3-dimensional connected and simply connected Riemannian manifold with constant sectional curvature equal to —1. This space has certain concrete models which all have certain advantages. We discuss here the four most classical ones.
板凳
發(fā)表于 2025-3-22 00:59:50 | 只看該作者
地板
發(fā)表于 2025-3-22 06:50:38 | 只看該作者
Günther von Bünau,Norbert RoesslerThis chapter contains various constructions for discontinuous groups of isometries of hyperbolic 3-space. Since we often use the terminology of Coxeter groups we report on this here. For the general theory of these groups see Bourbaki (1968).
5#
發(fā)表于 2025-3-22 11:20:39 | 只看該作者
Three-Dimensional Hyperbolic Space,Three-dimensional hyperbolic space is the unique 3-dimensional connected and simply connected Riemannian manifold with constant sectional curvature equal to —1. This space has certain concrete models which all have certain advantages. We discuss here the four most classical ones.
6#
發(fā)表于 2025-3-22 16:16:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:56 | 只看該作者
Examples of Discontinuous Groups,This chapter contains various constructions for discontinuous groups of isometries of hyperbolic 3-space. Since we often use the terminology of Coxeter groups we report on this here. For the general theory of these groups see Bourbaki (1968).
8#
發(fā)表于 2025-3-23 00:21:01 | 只看該作者
https://doi.org/10.1007/978-1-4684-3551-1y is quoted from Ford (1951) or Beardon (1977), (1983) We set up the theory as far as is necessary for the chapters to come. We can only quote the more difficult theorems on the subject. To include the proofs of all of them would have blown up the size of this book.
9#
發(fā)表于 2025-3-23 04:53:47 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:30 | 只看該作者
Photochemistry of the Nucleic Acids,is a discrete cocompact group. We already know from the preceding Chapter that —Δ is essentially self-adjoint and positive on the subspace . ? L. (.IH) consisting of all ..-functions . ? ..(.IH) such that Δ. ∈ .. (.IH) . This means that the closure of the graph of Δ in .. (.IH) × .. (.IH) is the graph of a self-adjoint linear operator .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高尔夫| 丽水市| 全椒县| 德昌县| 子洲县| 张家界市| 石景山区| 洪雅县| 五华县| 安阳县| 全州县| 黔南| 古浪县| 美姑县| 武夷山市| 台安县| 京山县| 自贡市| 深泽县| 建水县| 长阳| 五指山市| 南丰县| 沁阳市| 台州市| 西城区| 蒲城县| 剑阁县| 瓦房店市| 通渭县| 连城县| 黄骅市| 漳州市| 海城市| 阜阳市| 广昌县| 邢台市| 时尚| 博客| 灌云县| 德江县|