找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 10:15:42 | 只看該作者
Hypercentral Groups and Rings,group ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
12#
發(fā)表于 2025-3-23 15:35:41 | 只看該作者
Groups Acting on Finitely Generated Commutative Rings,ated by the image of?.. Then . is a finitely generated commutative ring and . acts on . by conjugation and normalizes the image of?.. We wish to work by induction. It is not sufficient to know about the group rings .(./.).../(.?1).. of ./. and .. of?., say by induction on the Hirsch number. We also
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:07 | 只看該作者
15#
發(fā)表于 2025-3-24 06:14:34 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:18 | 只看該作者
Phase-Transfer Catalysis: Fundamentals II,..All our rings will have an identity and all our modules will be unital. Our modules will sometimes be right, sometimes be left and sometimes have actions on both sides (e.g. bimodules). The following is an analogue of?2.3.
17#
發(fā)表于 2025-3-24 14:16:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
The Structure of Modules over Polycyclic Groups,In many ways this chapter is the culmination of much of the work we have done in Chaps.?6, 7 and?8. We are especially interested here in the structure of a finitely generated module over a polycyclic group. We then use this information to prove that a finitely generated abelian-by-polycyclic-by-finite group is residually finite.
20#
發(fā)表于 2025-3-25 00:27:50 | 只看該作者
Gerd Neumann,Axel Sch?fer,Werner Mendlinggroup ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴中市| 玉林市| 祁门县| 太保市| 安仁县| 宜兰县| 平邑县| 文昌市| 鸡西市| 平阳县| 桦川县| 宿州市| 五大连池市| 陆丰市| 米易县| 福泉市| 革吉县| 沙湾县| 马公市| 宁远县| 南汇区| 湟中县| 凤冈县| 神农架林区| 鹤岗市| 新竹市| 宁陕县| 宜昌市| 临泉县| 舞钢市| 东乡| 华蓥市| 怀集县| 彭阳县| 万盛区| 民勤县| 万年县| 黄龙县| 庄河市| 新竹县| 灵丘县|