找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 43626|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:10:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Group and Ring Theoretic Properties of Polycyclic Groups
編輯B.A.F. Wehrfritz
視頻videohttp://file.papertrans.cn/389/388964/388964.mp4
叢書名稱Algebra and Applications
圖書封面Titlebook: ;
出版日期Book 2009
版次1
doihttps://doi.org/10.1007/978-1-84882-941-1
isbn_softcover978-1-4471-2530-3
isbn_ebook978-1-84882-941-1Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
The information of publication is updating

書目名稱Group and Ring Theoretic Properties of Polycyclic Groups影響因子(影響力)




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups影響因子(影響力)學(xué)科排名




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups網(wǎng)絡(luò)公開度




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups被引頻次




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups被引頻次學(xué)科排名




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups年度引用




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups年度引用學(xué)科排名




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups讀者反饋




書目名稱Group and Ring Theoretic Properties of Polycyclic Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:08:37 | 只看該作者
Phasendiagramme einkomponentiger Systeme, a . group is a subgroup of .(.,.) for some . and?.. Warning: a linear group is more that just a group; it is a group together with a particular embedding into some selected .(.,.). For example, working over the complex numbers the groups . are isomorphic as groups, both being infinite cyclic, but h
地板
發(fā)表于 2025-3-22 06:16:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:15:33 | 只看該作者
6#
發(fā)表于 2025-3-22 16:53:40 | 只看該作者
Terrorism from Above and Below,.? How long can a chain of prime ideals of?.. be? These are the sort of questions we consider in this chapter. The proofs frequently use induction on the Hirsch number, so we begin by looking at the connection between the prime ideals of .. and the prime ideals of .. for . a normal subgroup of?..
7#
發(fā)表于 2025-3-22 19:53:17 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:56 | 只看該作者
9#
發(fā)表于 2025-3-23 04:41:57 | 只看該作者
The Basic Theory of Polycyclic Groups,e highlighting the essential components of the proof..A group class is a class . of groups such that ...∈. implies .∈. (the main condition; effectively we are dealing with isomorphism classes of groups rather than the groups themselves) and such that 〈1〉∈. (a?convenient convention). For certain comm
10#
發(fā)表于 2025-3-23 06:06:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江都市| 高州市| 卓资县| 绵竹市| 琼结县| 泌阳县| 陕西省| 新干县| 沙坪坝区| 邹平县| 宁南县| 澳门| 茂名市| 新化县| 平罗县| 华池县| 会泽县| 长寿区| 绍兴县| 鸡泽县| 叙永县| 山东| 雷州市| 伊宁市| 古丈县| 晋宁县| 武汉市| 朝阳市| 三原县| 长泰县| 嘉定区| 会理县| 武安市| 潼南县| 于田县| 虹口区| 乌兰察布市| 灵武市| 云龙县| 平舆县| 芜湖市|