找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 偏差
11#
發(fā)表于 2025-3-23 10:22:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:46 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra, the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex Lie algebras, which are helpful for real Lie groups and real Lie algebras.
13#
發(fā)表于 2025-3-23 21:22:45 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:01 | 只看該作者
Representation of General Lie Groups and General Lie Algebras,heory. As such special representation has analogies with representations of a compact Lie group, they can be more easily understood than the general case. Since this chapter is composed of very advanced topics and such sections are labeled with *, the reader can omit this chapter in the first time.
15#
發(fā)表于 2025-3-24 05:10:12 | 只看該作者
D. L. Andrews,M. R. S. McCoustray, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
16#
發(fā)表于 2025-3-24 06:50:53 | 只看該作者
Mathematical Foundation for Quantum System,y, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
17#
發(fā)表于 2025-3-24 11:07:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:38:51 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:56 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra,epresentations of Lie groups and Lie algebras by combining the contents of Chap.?.. Then, it introduces the Fourier transform for Lie groups including the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex L
20#
發(fā)表于 2025-3-25 01:44:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
正安县| 昭平县| 临泽县| 蒲城县| 长白| 涟源市| 吕梁市| 阳西县| 昔阳县| 林西县| 长武县| 乌审旗| 丘北县| 北安市| 滁州市| 德阳市| 澄城县| 无棣县| 铅山县| 岱山县| 抚宁县| 武胜县| 柳河县| 宣化县| 吴忠市| 巴楚县| 微山县| 丰顺县| 田阳县| 阜新| 锦屏县| 平南县| 玛沁县| 绥棱县| 虎林市| 嘉荫县| 舞阳县| 平乐县| 池州市| 巴南区| 山东|