找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 12707|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:50:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Group Representation for Quantum Theory
編輯Masahito Hayashi
視頻videohttp://file.papertrans.cn/389/388921/388921.mp4
圖書封面Titlebook: ;
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-319-44906-7
isbn_softcover978-3-319-83159-6
isbn_ebook978-3-319-44906-7
The information of publication is updating

書目名稱Group Representation for Quantum Theory影響因子(影響力)




書目名稱Group Representation for Quantum Theory影響因子(影響力)學(xué)科排名




書目名稱Group Representation for Quantum Theory網(wǎng)絡(luò)公開度




書目名稱Group Representation for Quantum Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Group Representation for Quantum Theory被引頻次




書目名稱Group Representation for Quantum Theory被引頻次學(xué)科排名




書目名稱Group Representation for Quantum Theory年度引用




書目名稱Group Representation for Quantum Theory年度引用學(xué)科排名




書目名稱Group Representation for Quantum Theory讀者反饋




書目名稱Group Representation for Quantum Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:08 | 只看該作者
Historical Trends in Personality Researchr discussion is limited to the cases with two or three particles, the discussion for quarks in this chapter is much simpler than that of the photonic system because we need to discuss unlimited number of bosons in the photonic system. Finally, we discuss uncertainty relation for wake packets on vari
板凳
發(fā)表于 2025-3-22 03:36:27 | 只看該作者
Representations of Typical Lie Groups and Typical Lie Algebras,is closely related to that of the permutation group on the same tensor product space. The relation is called Schur duality. We also consider what a finite subgroup of a Lie group can replace the Lie group when its representation is given. Such a problem is called design, and is discussed in this cha
地板
發(fā)表于 2025-3-22 05:53:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:53:47 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:00 | 只看該作者
https://doi.org/10.1007/978-1-4615-8687-6tter part of this chapter, we proceed to the details of representations of finite groups so that it introduces the Fourier transform for finite groups, which connects analysis and algebra. As a typical example, we analyze representations of a permutation group by using Young diagrams.
7#
發(fā)表于 2025-3-22 17:31:45 | 只看該作者
The U.S. Friction Materials Industrys. The canonical transformation is a typical transformation preserving the product of the Heisenberg group. This chapter discusses the representation that describes the transformation for the position and the momentum by Heisenberg group as well as the canonical transformation.
8#
發(fā)表于 2025-3-22 21:37:13 | 只看該作者
9#
發(fā)表于 2025-3-23 01:52:02 | 只看該作者
Group Representation Theory,tter part of this chapter, we proceed to the details of representations of finite groups so that it introduces the Fourier transform for finite groups, which connects analysis and algebra. As a typical example, we analyze representations of a permutation group by using Young diagrams.
10#
發(fā)表于 2025-3-23 07:40:15 | 只看該作者
Bosonic System and Quantum Optics,s. The canonical transformation is a typical transformation preserving the product of the Heisenberg group. This chapter discusses the representation that describes the transformation for the position and the momentum by Heisenberg group as well as the canonical transformation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞钢市| 将乐县| 黑山县| 抚顺县| 峡江县| 嵊州市| 于都县| 嘉义市| 四平市| 虎林市| 沽源县| 两当县| 攀枝花市| 辉县市| 尚志市| 湄潭县| 台州市| 佛教| 新兴县| 凌源市| 平昌县| 扎兰屯市| 商洛市| 海门市| 上高县| 阳谷县| 扎囊县| 图们市| 南宁市| 孝感市| 宜良县| 望城县| 宜宾县| 开远市| 新竹县| 明溪县| 嘉义县| 砀山县| 海口市| 岳阳市| 永丰县|