找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 偏差
11#
發(fā)表于 2025-3-23 10:22:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:46 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra, the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex Lie algebras, which are helpful for real Lie groups and real Lie algebras.
13#
發(fā)表于 2025-3-23 21:22:45 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:01 | 只看該作者
Representation of General Lie Groups and General Lie Algebras,heory. As such special representation has analogies with representations of a compact Lie group, they can be more easily understood than the general case. Since this chapter is composed of very advanced topics and such sections are labeled with *, the reader can omit this chapter in the first time.
15#
發(fā)表于 2025-3-24 05:10:12 | 只看該作者
D. L. Andrews,M. R. S. McCoustray, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
16#
發(fā)表于 2025-3-24 06:50:53 | 只看該作者
Mathematical Foundation for Quantum System,y, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
17#
發(fā)表于 2025-3-24 11:07:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:38:51 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:56 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra,epresentations of Lie groups and Lie algebras by combining the contents of Chap.?.. Then, it introduces the Fourier transform for Lie groups including the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex L
20#
發(fā)表于 2025-3-25 01:44:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏边| 永顺县| 丹寨县| 庄河市| 阿克陶县| 资溪县| 枝江市| 申扎县| 葵青区| 静乐县| 浮山县| 和顺县| 绥芬河市| 吴堡县| 达州市| 高陵县| 香格里拉县| 仁布县| 六安市| 延寿县| 若尔盖县| 卫辉市| 阿荣旗| 平武县| 文昌市| 富阳市| 浦北县| 饶阳县| 湖口县| 东乡族自治县| 城固县| 边坝县| 扶余县| 郎溪县| 普安县| 沂水县| 盐源县| 徐水县| 涞源县| 定日县| 娄底市|