找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Forestall
21#
發(fā)表于 2025-3-25 07:21:10 | 只看該作者
22#
發(fā)表于 2025-3-25 10:45:35 | 只看該作者
The 2-Characters of a Group and the Weak Cayley Table,concise information which in addition to that in the character table determines a group. The first part of this chapter examines the extra information which is obtained if the irreducible 2-characters of a group are known. It is shown that this is equivalent to the knowledge of the “weak Cayley tabl
23#
發(fā)表于 2025-3-25 13:28:03 | 只看該作者
The Extended ,-Characters, certain subsets of .., the .-classes. Here work of Vazirani is presented which provides a set of “extended .-characters” for arbitrary .. These connect with various aspects of the representation theory of the symmetric groups and the general linear groups..Immanent .-characters are defined for arbi
24#
發(fā)表于 2025-3-25 17:05:58 | 只看該作者
Fourier Analysis on Groups, Random Walks and Markov Chains,s an arbitrary function on . the process of transforming ..(.) into a block diagonal matrix is equivalent to the obtaining the Fourier transform of .. This chapter explains the connections with harmonic analysis and the group matrix. Most of the discussion is on probability theory and random walks..
25#
發(fā)表于 2025-3-26 00:03:07 | 只看該作者
-Characters and ,-Homomorphisms,In geometry a Frobenius .-homomorphism is defined essentially in terms of the combinatorics of .-characters. Buchstaber and Rees generalized the result of Gelfand and Kolmogorov which reconstructs a geometric space from the algebra of functions on the space and used Frobenius .-homomorphisms which a
26#
發(fā)表于 2025-3-26 00:52:55 | 只看該作者
Fusion and Supercharacters,hat their character table is a fusion of that of an abelian group is addressed. It proved difficult to answer this question but many results can be obtained. There is given an explicit description of the finite groups whose character tables fuse from a cyclic group. Then there is given an account of
27#
發(fā)表于 2025-3-26 06:38:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:52 | 只看該作者
29#
發(fā)表于 2025-3-26 13:40:06 | 只看該作者
Sozialrechtliche Aspekte des Personalrechts,ich preserve diaonalizability of the corresponding group matrix. As an example of how the group matrix and group determinant can be used as tools, their application to random walks which become uniform after a finite number of steps is examined.
30#
發(fā)表于 2025-3-26 17:01:54 | 只看該作者
Norm Forms and Group Determinant Factors, the form can be constructed rationally from the first three coefficients of its “characteristic equation”. This, applied to the group determinant, shows that the 1-, 2- and 3-characters determine a group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 松溪县| 安乡县| 宁乡县| 巍山| 东安县| 秭归县| 巨野县| 屯昌县| 深水埗区| 潜江市| 甘孜| 台中市| 宣化县| 石楼县| 科尔| 元江| 望城县| 平陆县| 海林市| 恭城| 岳普湖县| 昌都县| 日照市| 灵台县| 武城县| 米林县| 滨州市| 南宁市| 商都县| 长寿区| 建德市| 灵山县| 石家庄市| 泸定县| 汕头市| 景泰县| 福建省| 宁海县| 梅河口市| 夏邑县|