找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Forestall
11#
發(fā)表于 2025-3-23 09:59:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:51:34 | 只看該作者
Personalpolitik und Mitbestimmunget has the Gelfand pair property explained below. A general setting which encompasses and extends this is that of an association scheme. For any association scheme there is available a character theory, which in the case where the scheme arises from a group coincides with that of group characters. T
13#
發(fā)表于 2025-3-23 19:11:03 | 只看該作者
14#
發(fā)表于 2025-3-24 00:52:22 | 只看該作者
Jürg Gabathuler,Julia Kornfeind certain subsets of .., the .-classes. Here work of Vazirani is presented which provides a set of “extended .-characters” for arbitrary .. These connect with various aspects of the representation theory of the symmetric groups and the general linear groups..Immanent .-characters are defined for arbi
15#
發(fā)表于 2025-3-24 03:32:07 | 只看該作者
Sozialrechtliche Aspekte des Personalrechts,s an arbitrary function on . the process of transforming ..(.) into a block diagonal matrix is equivalent to the obtaining the Fourier transform of .. This chapter explains the connections with harmonic analysis and the group matrix. Most of the discussion is on probability theory and random walks..
16#
發(fā)表于 2025-3-24 06:45:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:10:14 | 只看該作者
https://doi.org/10.1007/978-3-663-05735-2hat their character table is a fusion of that of an abelian group is addressed. It proved difficult to answer this question but many results can be obtained. There is given an explicit description of the finite groups whose character tables fuse from a cyclic group. Then there is given an account of
18#
發(fā)表于 2025-3-24 16:36:06 | 只看該作者
Multiplicative Forms on Algebras and the Group Determinant,s back to the search for “sums of squares identities”, the construction of “hypercomplex numbers” and the investigation of quadratic forms. The underlying objects, the group matrix, and its determinant, the group determinant, are introduced. It is shown that group matrices can be constructed as bloc
19#
發(fā)表于 2025-3-24 18:59:54 | 只看該作者
Further Group Matrices and Group Determinants,nt matrix. The book by Davis (Circulant Matrices, Chelsea, New York, 1994) gives a comprehensive account of circulants and the chapter is designed to provide a far reaching extension and generalization of the results there. If an arbitrary subgroup . of a group . is taken, it is shown that with an a
20#
發(fā)表于 2025-3-25 02:12:31 | 只看該作者
Norm Forms and Group Determinant Factors,tructive approach to the theory of algebras which uses the generalization to noncommutative algebras of a (multiplicative) norm, which can be applied to obtain results on group determinants. This continues a line of research which goes back to Frobenius. Significant results which have not been trans
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 01:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
瓦房店市| 工布江达县| 定南县| 富源县| 龙门县| 博湖县| 汝城县| 兰溪市| 井冈山市| 河池市| 霞浦县| 肥乡县| 镇原县| 平昌县| 夏邑县| 通州市| 收藏| 乐至县| 齐齐哈尔市| 稷山县| 威远县| 万全县| 个旧市| 崇礼县| 西畴县| 正定县| 雅安市| 黎川县| 寻甸| 长春市| 鄂伦春自治旗| 怀安县| 孝义市| 华亭县| 绍兴县| 建阳市| 信宜市| 正安县| 静宁县| 钟山县| 星子县|