找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Callow
21#
發(fā)表于 2025-3-25 04:08:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:43:22 | 只看該作者
RecurrenceThe topic presented in this chapter is recurrence. This concept can be studied via probability, potential theory and operator theory and has interpretations in each context.
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:05 | 只看該作者
Uniformly Positive MeasureIn this chapter we look at consequences of lower bounds on the measure . for a graph . over a discrete measure space .. We formulate the lower bound assumptions in two ways.
26#
發(fā)表于 2025-3-26 02:07:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:48:56 | 只看該作者
Sparseness and Isoperimetric InequalitiesIn this chapter we investigate what it means for a graph to have relatively few edges. This leads to the notions of weakly sparse, approximately sparse and sparse graphs, as well as graphs which satisfy a strong isoperimetric inequality.
28#
發(fā)表于 2025-3-26 08:46:29 | 只看該作者
29#
發(fā)表于 2025-3-26 14:01:04 | 只看該作者
Harmonic Functions and Caccioppoli TheoryThe key tool for all of these results are variants of the Caccioppoli inequality which are established in Section 12.1. Roughly speaking, such inequalities allow us to estimate the energy of . times a cutoff function by . times the energy of the cutoff function.
30#
發(fā)表于 2025-3-26 19:17:20 | 只看該作者
Spectral BoundsIn this section we prove an analogue to Cheeger’s famous theorem on Riemannian manifolds. This result relates an isoperimetric constant, called the Cheeger constant, to the bottom of the spectrum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 高阳县| 秭归县| 胶州市| 五莲县| 会同县| 迁安市| 吉隆县| 乾安县| 日土县| 隆化县| 安仁县| 无极县| 云林县| 开封市| 连山| 榆树市| 嘉禾县| 蒙山县| 曲周县| 昌邑市| 兴文县| 黔南| 丰台区| 吉林省| 红河县| 永济市| 东宁县| 桑植县| 瓮安县| 行唐县| 孙吴县| 土默特右旗| 蓬莱市| 峡江县| 淅川县| 通城县| 保靖县| 菏泽市| 临沂市| 吉林市|