找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Callow
21#
發(fā)表于 2025-3-25 04:08:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:43:22 | 只看該作者
RecurrenceThe topic presented in this chapter is recurrence. This concept can be studied via probability, potential theory and operator theory and has interpretations in each context.
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:05 | 只看該作者
Uniformly Positive MeasureIn this chapter we look at consequences of lower bounds on the measure . for a graph . over a discrete measure space .. We formulate the lower bound assumptions in two ways.
26#
發(fā)表于 2025-3-26 02:07:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:48:56 | 只看該作者
Sparseness and Isoperimetric InequalitiesIn this chapter we investigate what it means for a graph to have relatively few edges. This leads to the notions of weakly sparse, approximately sparse and sparse graphs, as well as graphs which satisfy a strong isoperimetric inequality.
28#
發(fā)表于 2025-3-26 08:46:29 | 只看該作者
29#
發(fā)表于 2025-3-26 14:01:04 | 只看該作者
Harmonic Functions and Caccioppoli TheoryThe key tool for all of these results are variants of the Caccioppoli inequality which are established in Section 12.1. Roughly speaking, such inequalities allow us to estimate the energy of . times a cutoff function by . times the energy of the cutoff function.
30#
發(fā)表于 2025-3-26 19:17:20 | 只看該作者
Spectral BoundsIn this section we prove an analogue to Cheeger’s famous theorem on Riemannian manifolds. This result relates an isoperimetric constant, called the Cheeger constant, to the bottom of the spectrum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐昌市| 常州市| 壤塘县| 赫章县| 鸡泽县| 曲阜市| 抚州市| 文水县| 嵩明县| 清镇市| 子洲县| 礼泉县| 安龙县| 碌曲县| 扎囊县| 内丘县| 昌乐县| 公主岭市| 洛扎县| 巫溪县| 成都市| 博罗县| 大庆市| 丰县| 阿鲁科尔沁旗| 潞城市| 兴隆县| 威远县| 陆良县| 迁西县| 嘉定区| 凌云县| 关岭| 新河县| 奎屯市| 定襄县| 高阳县| 麟游县| 北辰区| 高陵县| 海淀区|