找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Callow
11#
發(fā)表于 2025-3-23 11:45:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:39 | 只看該作者
https://doi.org/10.1007/978-3-662-53375-8In this chapter we investigate what it means for a graph to have relatively few edges. This leads to the notions of weakly sparse, approximately sparse and sparse graphs, as well as graphs which satisfy a strong isoperimetric inequality.
13#
發(fā)表于 2025-3-23 20:43:42 | 只看該作者
Hilde Weiss,Gülay Ate?,Philipp SchnellIn this chapter we introduce the notion of an intrinsic metric. Section 11.1 is devoted to definitions and motivations. An important class of examples are so-called path metrics, which we discuss in Section 11.2. In this section we prove a Hopf–Rinow theorem, which characterizes metric completeness.
14#
發(fā)表于 2025-3-24 00:42:20 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:35 | 只看該作者
https://doi.org/10.1057/9780230119048In this chapter we present a volume growth criterion for stochastic completeness. More specifically, we show that the measure of finite balls defined with respect to an intrinsic metric must growsuperexponentially in order for a graph to be stochastically incomplete.
17#
發(fā)表于 2025-3-24 12:17:28 | 只看該作者
Finite GraphsThe concept of a graph is one of the most fundamental mathematical concepts ever conceived. Graphs inherently appear in many branches of mathematics and natural sciences.
18#
發(fā)表于 2025-3-24 17:04:17 | 只看該作者
Infinite Graphs – Key ConceptsIn this chapter we discuss key concepts in the spectral geometry of infinite graphs. We first introduce in Section 1.1 the setting and the main objects of study found throughout the remainder of the book.
19#
發(fā)表于 2025-3-24 19:35:34 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三明市| 清丰县| 涡阳县| 息烽县| 安国市| 荆州市| 兴化市| 三台县| 奈曼旗| 绵阳市| 和静县| 西华县| 高雄市| 夏邑县| 宝坻区| 桐乡市| 萨迦县| 西丰县| 剑阁县| 湘西| 商都县| 大厂| 香港| 垦利县| 赫章县| 绥滨县| 南昌市| 临桂县| 资中县| 双柏县| 泗阳县| 鹿泉市| 西丰县| 马公市| 谢通门县| 龙海市| 开平市| 六盘水市| 红安县| 钦州市| 扶绥县|