找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 五個
61#
發(fā)表于 2025-4-1 04:53:44 | 只看該作者
62#
發(fā)表于 2025-4-1 07:16:32 | 只看該作者
63#
發(fā)表于 2025-4-1 10:16:34 | 只看該作者
64#
發(fā)表于 2025-4-1 14:37:49 | 只看該作者
Molecular Mechanisms of Fanconi Anemiafinite classes of graph covering problems we derive .-completeness results by reductions from graph coloring problems. We illustrate this methodology by classifying all graph covering problems defined by simple graphs with at most 6 vertices.
65#
發(fā)表于 2025-4-1 20:36:13 | 只看該作者
https://doi.org/10.1007/978-1-4419-0298-6 eNCE graph grammars, nonterminal nodes are never adjacent. In this paper, we show that given a confluent or boundary eNCE graph grammar ., the problem whether the language . defined by . is empty, is DEXPTIME-complete.
66#
發(fā)表于 2025-4-2 01:23:37 | 只看該作者
https://doi.org/10.1007/978-94-011-1506-3solved in . if the maximum value of . is poly-logarithmic in the input size [., LNCS . (1991) 385–395]. In this paper, we show a nontrivial interesting result that the Max-.-DS problem for planar graphs can be solved in .(log..) time with . processors on a CRCW PRAM, where . is the input size.
67#
發(fā)表于 2025-4-2 05:06:21 | 只看該作者
Domino treewidth,lgorithms that — for fixed . — decide whether a given graph . has domino treewidth at most .. If . is not fixed, this problem is NP-complete. The domino treewidth problem is hard for the complexity classes .[.] for all . ξ ., and hence the problem for fixed . is unlikely to be solvable in .(..), where . is a constant, not depending on ..
68#
發(fā)表于 2025-4-2 08:46:13 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
浦北县| 威宁| 赤水市| 四子王旗| 四平市| 阿尔山市| 镇康县| 栖霞市| 博湖县| 铜鼓县| 务川| 鹿泉市| 通榆县| 木兰县| 井冈山市| 都兰县| 紫阳县| 东宁县| 桐庐县| 滦平县| 平泉县| 云南省| 睢宁县| 临安市| 聂拉木县| 枣强县| 夏河县| 那坡县| 嵊泗县| 无为县| 鞍山市| 古浪县| 平顶山市| 丰县| 绥宁县| 清苑县| 恩平市| 沿河| 沁阳市| 抚州市| 江门市|