找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 五個
41#
發(fā)表于 2025-3-28 16:32:14 | 只看該作者
42#
發(fā)表于 2025-3-28 18:52:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:33:04 | 只看該作者
44#
發(fā)表于 2025-3-29 04:11:33 | 只看該作者
45#
發(fā)表于 2025-3-29 07:42:49 | 只看該作者
The maximal ,-dependent set problem for planar graphs is in NC,d a maximal subset . of . such that no vertex . has degree>.(.) in the subgraph induced by .. Whether the problem is in . (or .) or not is an open question. Concerning this question, only a rather trivial result due to Diks, Garrido, and Lingas is known up to now, which says that the problem can be
46#
發(fā)表于 2025-3-29 14:12:47 | 只看該作者
47#
發(fā)表于 2025-3-29 18:39:15 | 只看該作者
Dominoes,ow that they can be recognized in linear time, give a linear time algorithm for listing all maximal cliques (which implies a linear time algorithm computing a maximum clique of a domino) and show that the PATHWIDTH problem remains NP-complete when restricted to the class of chordal dominoes.
48#
發(fā)表于 2025-3-29 22:22:56 | 只看該作者
Minimum vertex cover, distributed decision-making, and communication complexity,re . is the number of processors. In the second framework two processors are allowed to communicate in order to find an approximate solution: in this latter case, we show a linear lower bound on the communication complexity of the problem.
49#
發(fā)表于 2025-3-30 00:35:48 | 只看該作者
50#
發(fā)表于 2025-3-30 05:05:41 | 只看該作者
https://doi.org/10.1007/978-2-8178-0466-8bstruction of order .+2 for width ., we find that the number of obstructions of order .+3 alone is an asymptotically exponential function of .. Our proof of this is based on the theory of partitions of integers and is the first non-trivial lower bound on the number of obstructions for treewidth.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南江县| 贵州省| 离岛区| 磐石市| 康马县| 临朐县| 波密县| 定襄县| 东源县| 夹江县| 大名县| 宜城市| 隆子县| 余姚市| 威远县| 岐山县| 宿松县| 孟村| 桦南县| 清徐县| 鱼台县| 石楼县| 鹤壁市| 石景山区| 延安市| 正镶白旗| 道孚县| 扎赉特旗| 西城区| 岚皋县| 青铜峡市| 屏东市| 石楼县| 丽江市| 专栏| 临泉县| 林芝县| 奇台县| 洞口县| 岐山县| 开平市|