找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 五個
61#
發(fā)表于 2025-4-1 04:53:44 | 只看該作者
62#
發(fā)表于 2025-4-1 07:16:32 | 只看該作者
63#
發(fā)表于 2025-4-1 10:16:34 | 只看該作者
64#
發(fā)表于 2025-4-1 14:37:49 | 只看該作者
Molecular Mechanisms of Fanconi Anemiafinite classes of graph covering problems we derive .-completeness results by reductions from graph coloring problems. We illustrate this methodology by classifying all graph covering problems defined by simple graphs with at most 6 vertices.
65#
發(fā)表于 2025-4-1 20:36:13 | 只看該作者
https://doi.org/10.1007/978-1-4419-0298-6 eNCE graph grammars, nonterminal nodes are never adjacent. In this paper, we show that given a confluent or boundary eNCE graph grammar ., the problem whether the language . defined by . is empty, is DEXPTIME-complete.
66#
發(fā)表于 2025-4-2 01:23:37 | 只看該作者
https://doi.org/10.1007/978-94-011-1506-3solved in . if the maximum value of . is poly-logarithmic in the input size [., LNCS . (1991) 385–395]. In this paper, we show a nontrivial interesting result that the Max-.-DS problem for planar graphs can be solved in .(log..) time with . processors on a CRCW PRAM, where . is the input size.
67#
發(fā)表于 2025-4-2 05:06:21 | 只看該作者
Domino treewidth,lgorithms that — for fixed . — decide whether a given graph . has domino treewidth at most .. If . is not fixed, this problem is NP-complete. The domino treewidth problem is hard for the complexity classes .[.] for all . ξ ., and hence the problem for fixed . is unlikely to be solvable in .(..), where . is a constant, not depending on ..
68#
發(fā)表于 2025-4-2 08:46:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
同仁县| 盐边县| 和顺县| 镇雄县| 嘉峪关市| 明溪县| 溆浦县| 沙洋县| 林口县| 兴文县| 建德市| 阿瓦提县| 五华县| 侯马市| 武川县| 乐昌市| 石泉县| 太谷县| 平顶山市| 泽普县| 洛阳市| 屏东市| 桂阳县| 涿鹿县| 江永县| 漠河县| 三原县| 苏尼特右旗| 泰州市| 禹城市| 武胜县| 巴青县| 高雄县| 民和| 古交市| 阜南县| 景宁| 海淀区| 十堰市| 长沙县| 江津市|