找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 五個
41#
發(fā)表于 2025-3-28 16:32:14 | 只看該作者
42#
發(fā)表于 2025-3-28 18:52:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:33:04 | 只看該作者
44#
發(fā)表于 2025-3-29 04:11:33 | 只看該作者
45#
發(fā)表于 2025-3-29 07:42:49 | 只看該作者
The maximal ,-dependent set problem for planar graphs is in NC,d a maximal subset . of . such that no vertex . has degree>.(.) in the subgraph induced by .. Whether the problem is in . (or .) or not is an open question. Concerning this question, only a rather trivial result due to Diks, Garrido, and Lingas is known up to now, which says that the problem can be
46#
發(fā)表于 2025-3-29 14:12:47 | 只看該作者
47#
發(fā)表于 2025-3-29 18:39:15 | 只看該作者
Dominoes,ow that they can be recognized in linear time, give a linear time algorithm for listing all maximal cliques (which implies a linear time algorithm computing a maximum clique of a domino) and show that the PATHWIDTH problem remains NP-complete when restricted to the class of chordal dominoes.
48#
發(fā)表于 2025-3-29 22:22:56 | 只看該作者
Minimum vertex cover, distributed decision-making, and communication complexity,re . is the number of processors. In the second framework two processors are allowed to communicate in order to find an approximate solution: in this latter case, we show a linear lower bound on the communication complexity of the problem.
49#
發(fā)表于 2025-3-30 00:35:48 | 只看該作者
50#
發(fā)表于 2025-3-30 05:05:41 | 只看該作者
https://doi.org/10.1007/978-2-8178-0466-8bstruction of order .+2 for width ., we find that the number of obstructions of order .+3 alone is an asymptotically exponential function of .. Our proof of this is based on the theory of partitions of integers and is the first non-trivial lower bound on the number of obstructions for treewidth.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹市| 谢通门县| 西昌市| 常德市| 高密市| 昌都县| 商丘市| 永宁县| 肇源县| 札达县| 白玉县| 扎囊县| 交口县| 余姚市| 游戏| 泗阳县| 大港区| 屯门区| 山丹县| 叙永县| 合川市| 连江县| 连云港市| 宝鸡市| 页游| 杭州市| 珠海市| 平顺县| 潮安县| 台中县| 顺昌县| 金沙县| 马边| 七台河市| 南康市| 抚州市| 余干县| 清新县| 石首市| 青神县| 宜良县|