找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 櫥柜
51#
發(fā)表于 2025-3-30 10:59:08 | 只看該作者
52#
發(fā)表于 2025-3-30 14:44:58 | 只看該作者
https://doi.org/10.1007/978-3-322-90466-9at a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
53#
發(fā)表于 2025-3-30 20:28:03 | 只看該作者
Moderne Organisationstheorien 2 graph classes for all but finitely many cases, whenever neither of the forbidden graphs is a clique, a pan, or a complement of these graphs. Further reducing the remaining open cases we show that (with respect to graph isomorphism) forbidding a pan is equivalent to forbidding a clique of size three.
54#
發(fā)表于 2025-3-30 22:59:07 | 只看該作者
55#
發(fā)表于 2025-3-31 01:11:47 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:29 | 只看該作者
Constructing Resilient Structures in Graphs: Rigid vs. Competitive Fault-Tolerancet-tolerant, namely, reinforcing it so that following a failure event, its surviving part continues to satisfy the requirements. The talk will distinguish between two types of fault-tolerance, termed rigid and competitive fault tolerance, compare these two notions, and illustrate them on a number of examples.
57#
發(fā)表于 2025-3-31 11:44:40 | 只看該作者
Minimum Weighted Clique Cover on Strip-Composed Perfect Graphsat a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山丹县| 阿荣旗| 剑阁县| 万荣县| 营山县| 青岛市| 突泉县| 荣昌县| 扬中市| 从化市| 五峰| 通许县| 惠水县| 瑞安市| 新化县| 从江县| 英超| 宁都县| 光泽县| 漳浦县| 金寨县| 崇义县| 丰县| 福州市| 和平区| 扶余县| 海淀区| 辛集市| 广元市| 阿鲁科尔沁旗| 鄂州市| 河津市| 当涂县| 信宜市| 安塞县| 扎兰屯市| 安乡县| 平舆县| 阳新县| 安徽省| 上犹县|