找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 櫥柜
11#
發(fā)表于 2025-3-23 11:44:24 | 只看該作者
Martin Charles Golumbic,Michal Stern,Gila Morgenst
12#
發(fā)表于 2025-3-23 17:07:53 | 只看該作者
Account on Intervalsclass of graphs are well understood, some old problems are still open. One such problem is the so-called interval count problem, which asks for the minimum number of different interval lengths needed to represent a given interval graph. Whereas graphs of interval count 1 coincide with unit interval
13#
發(fā)表于 2025-3-23 19:55:28 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:44:27 | 只看該作者
16#
發(fā)表于 2025-3-24 08:32:25 | 只看該作者
Minimum Weighted Clique Cover on Strip-Composed Perfect Graphsdates back to 1984. More recently, Chudnovsky and Seymour [3] introduced a composition operation, strip-composition, in order to define their structural results for claw-free graphs; however, this composition operation is general and applies to non-claw-free graphs as well. In this paper, we show th
17#
發(fā)表于 2025-3-24 13:59:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:30:42 | 只看該作者
Optimization Problems in Dotted Interval Graphsus classical graph-theoretic optimization problems in .-DI graphs of arbitrarily, but fixed, ...We show that ., ., and . can be solved in polynomial time in this graph class, answering an open question posed by Jiang .. We also show that . can be approximated within a factor of (1?+?.) for any .?>?0
19#
發(fā)表于 2025-3-24 19:49:58 | 只看該作者
The Maximum Clique Problem in Multiple Interval Graphs (Extended Abstract)ne. We study the complexity of the MAXIMUM CLIQUE problem in several classes of multiple interval graphs. The MAXIMUM CLIQUE problem, or the problem of finding the size of the maximum clique, is known to be NP-complete for .-interval graphs when .?≥?3 and polynomial-time solvable when .?=?1. The pro
20#
發(fā)表于 2025-3-25 00:47:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐亭县| 宾阳县| 黄大仙区| 太保市| 和静县| 高雄市| 天峻县| 红原县| 麻城市| 南城县| 偏关县| 扎赉特旗| 武宣县| 祁阳县| 滕州市| 加查县| 宁武县| 朝阳区| 闵行区| 阿坝县| 公主岭市| 前郭尔| 封丘县| 台北市| 藁城市| 峡江县| 揭阳市| 定远县| 普宁市| 廉江市| 盐津县| 务川| 华阴市| 嘉禾县| 靖边县| 介休市| 鄂托克前旗| 吴川市| 南雄市| 中牟县| 临湘市|