找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Hypothesis
31#
發(fā)表于 2025-3-26 21:53:11 | 只看該作者
https://doi.org/10.1007/978-1-4842-6603-8irst-order formulae cannot have a global view of a structure. This limitation ensures their low sequential computational complexity. We show that the locality impacts as well on their distributed computational complexity. We use first-order formulae to describe the properties of finite connected gra
32#
發(fā)表于 2025-3-27 01:39:11 | 只看該作者
33#
發(fā)表于 2025-3-27 09:20:22 | 只看該作者
34#
發(fā)表于 2025-3-27 11:25:29 | 只看該作者
35#
發(fā)表于 2025-3-27 17:07:37 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:03 | 只看該作者
https://doi.org/10.1057/9780230625198duced prime graphs with respect to . and an undirected graph has rank-width at most 1 if and only if it is a distance-hereditary graph. We are interested in an extension of these results to directed graphs. We give several characterizations of directed graphs of rank-width 1 and we prove that the ra
37#
發(fā)表于 2025-3-28 01:10:27 | 只看該作者
38#
發(fā)表于 2025-3-28 04:26:29 | 只看該作者
https://doi.org/10.1007/978-3-642-76401-1 with respect to the number of vertices. We also show that its running time is 2.1364... when the goal is to find a spanning tree with at least . internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.
39#
發(fā)表于 2025-3-28 09:15:47 | 只看該作者
Mathematics and Its Applications of size . (and at most .) are W[1]-complete problems (when parameterized by .) for any pair of finite sets . and .. We further present results on dual parametrization by .???., and results on certain infinite sets (in particular for ., . being the sets of even and odd integers).
40#
發(fā)表于 2025-3-28 10:40:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 延寿县| 朝阳市| 夹江县| 米易县| 台北市| 甘德县| 黄陵县| 汉沽区| 昌吉市| 孝昌县| 衡水市| 乐业县| 华亭县| 河西区| 青岛市| 蓬莱市| 鄂伦春自治旗| 商丘市| 本溪市| 广平县| 瑞安市| 屯昌县| 阿坝县| 宜兰市| 清水河县| 靖西县| 达拉特旗| 正蓝旗| 尉氏县| 武安市| 溆浦县| 浪卡子县| 自贡市| 东丽区| 浦江县| 博乐市| 贡觉县| 怀集县| 云林县| 曲沃县|