找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 16:04:58 | 只看該作者
12#
發(fā)表于 2025-3-23 20:56:07 | 只看該作者
Parameterized Complexity of Generalized Domination Problems,or every .???.. This concept, introduced by Telle in 1990’s, generalizes and unifies several variants of graph domination studied separately before. We study the parameterized complexity of (.,.)-domination in this general setting. Among other results we show that existence of a (.,.)-dominating set
13#
發(fā)表于 2025-3-24 00:44:14 | 只看該作者
14#
發(fā)表于 2025-3-24 05:38:29 | 只看該作者
15#
發(fā)表于 2025-3-24 07:38:41 | 只看該作者
16#
發(fā)表于 2025-3-24 12:47:09 | 只看該作者
17#
發(fā)表于 2025-3-24 18:17:24 | 只看該作者
Local Algorithms for Edge Colorings in UDGs,sor networks as they can be used to model link scheduling problems in such networks. It is well known that both problems are NP-complete, and approximation algorithms for them have been extensively studied under the centralized model of computation. Centralized algorithms, however, are not suitable
18#
發(fā)表于 2025-3-24 19:06:08 | 只看該作者
19#
發(fā)表于 2025-3-24 23:39:46 | 只看該作者
https://doi.org/10.1007/978-1-349-05843-3performing a graph-theoretic algorithm on it. Often, the efficiency of the algorithm depends on the special properties of the graph constructed in this way. We survey the art gallery problem, partition into rectangles, minimum-diameter clustering, rectilinear cartogram construction, mesh stripificat
20#
發(fā)表于 2025-3-25 05:25:34 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 19:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天祝| 略阳县| 水富县| 礼泉县| 丹巴县| 壤塘县| 无锡市| 阳江市| 武汉市| 故城县| 许昌县| 泰和县| 巴林右旗| 长垣县| 桓仁| 开鲁县| 南木林县| 阳信县| 翁源县| 房产| 怀来县| 横峰县| 安陆市| 正安县| 宽城| 宁都县| 金门县| 沂水县| 宜良县| 新绛县| 满洲里市| 洮南市| 沭阳县| 突泉县| 三门县| 大足县| 南木林县| 赤峰市| 兴和县| 和平区| 天祝|