找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Helmet
41#
發(fā)表于 2025-3-28 16:05:47 | 只看該作者
https://doi.org/10.1007/978-94-007-5219-1le a number of different approaches have been presented, a quantitative evaluation of those algorithms remains a challenging task: Manual generation of ground truth for real-world data is often time-consuming and error-prone, and while tools for generating synthetic datasets with corresponding groun
42#
發(fā)表于 2025-3-28 19:04:47 | 只看該作者
43#
發(fā)表于 2025-3-28 23:57:48 | 只看該作者
44#
發(fā)表于 2025-3-29 06:00:33 | 只看該作者
https://doi.org/10.1007/978-1-4684-5430-7 database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose
45#
發(fā)表于 2025-3-29 11:11:49 | 只看該作者
https://doi.org/10.1007/978-1-4612-4788-3istance of two graphs. However, the memory requirements and execution times of this method are respectively proportional to . and . where . and . are the order of the graphs. Subsequent developments reduced these complexities. However, these improvements are valid only under some constraints on the
46#
發(fā)表于 2025-3-29 13:16:53 | 只看該作者
47#
發(fā)表于 2025-3-29 15:51:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:29:37 | 只看該作者
https://doi.org/10.1007/978-981-15-1255-1of interactions that emerge from such systems. Several measures have been introduced to analyse these networks, and among them one of the most fundamental ones is vertex centrality, which quantifies the importance of a vertex within a graph. In this paper, we propose a novel vertex centrality measur
49#
發(fā)表于 2025-3-30 03:21:11 | 只看該作者
50#
發(fā)表于 2025-3-30 04:13:10 | 只看該作者
https://doi.org/10.1007/978-94-007-5219-1 require ground truth data. Moreover, available ground truth information can be incorporated to additionally evaluate the correctness of the graph extraction algorithm. We demonstrate the usefulness and applicability of our approach in an exemplary study on synthetic and real-world data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诏安县| 收藏| 古丈县| 泰兴市| 清苑县| 松潘县| 萨嘎县| 渑池县| 合肥市| 南木林县| 綦江县| 虹口区| 柳河县| 泾川县| 旺苍县| 新巴尔虎左旗| 文安县| 潞西市| 溧阳市| 郸城县| 达拉特旗| 仁布县| 藁城市| 丰城市| 罗江县| 阿瓦提县| 南澳县| 邻水| 凤庆县| 金秀| 乌拉特后旗| 加查县| 大城县| 邢台县| 柳河县| 无极县| 台山市| 河源市| 上高县| 颍上县| 晋江市|