找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:04:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:27:01 | 只看該作者
Shape Simplification Through Graph Sparsificationle of graph sparsification is to retain only the edges which are key to the preservation of desired properties. In this regard, sparsification by edge resistance allows us to preserve (to some extent) links between protrusions and the remainder of the shape (e.g. parts of a shape) while removing in-
23#
發(fā)表于 2025-3-25 13:15:02 | 只看該作者
24#
發(fā)表于 2025-3-25 17:09:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:42 | 只看該作者
Learning Graph Matching with a Graph-Based Perceptron in a Classification Contextccurate approximations have led to significant progress in a wide range of applications. Learning graph matching functions from observed data, however, still remains a challenging issue. This paper presents an effective scheme to parametrize a graph model for object matching in a classification cont
26#
發(fā)表于 2025-3-26 03:39:26 | 只看該作者
A Nested Alignment Graph Kernel Through the Dynamic Time Warping Frameworkfically, for a pair of graphs, we commence by computing the depth-based complexity traces rooted at the centroid vertices. The resulting kernel for the graphs is defined by measuring the global alignment kernel, which is developed through the dynamic time warping framework, between the complexity tr
27#
發(fā)表于 2025-3-26 04:49:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:33:05 | 只看該作者
29#
發(fā)表于 2025-3-26 13:41:25 | 只看該作者
Detecting Alzheimer’s Disease Using Directed Graphss. However, the structure of the directed networks representing the activation patterns, and their differences in healthy and Alzheimer’s people remain poorly understood. In this paper, we aim to identify the differences in fMRI activation network structure for patients with AD, late mild cognitive
30#
發(fā)表于 2025-3-26 20:41:47 | 只看該作者
Error-Tolerant Coarse-to-Fine Matching Model for Hierarchical Graphs database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁怀市| 常宁市| 淄博市| 赣榆县| 宜川县| 胶南市| 衢州市| 西乌珠穆沁旗| 长治县| 班戈县| 德安县| 临城县| 施甸县| 汾阳市| 吉首市| 黔南| 东兰县| 枝江市| 乌拉特中旗| 维西| 城固县| 沈阳市| 石首市| 克拉玛依市| 秦皇岛市| 三明市| 广饶县| 高淳县| 靖安县| 兰考县| 同仁县| 左云县| 柳林县| 吉林市| 怀仁县| 偏关县| 阜新| 宾川县| 延川县| 上林县| 广州市|