找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Menthol
51#
發(fā)表于 2025-3-30 10:37:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:38:34 | 只看該作者
Automated Results and Conjectures on Average Distance in Graphs,ower and upper bounds, functions of the order . of . and ⊕ ∈ ?, + ×, /. In 24 out of 48 cases simple bounds are obtained and proved by the system. In 21 more cases, the system provides bounds, 16 of which are proved by hand.
53#
發(fā)表于 2025-3-30 18:39:49 | 只看該作者
54#
發(fā)表于 2025-3-30 22:23:38 | 只看該作者
55#
發(fā)表于 2025-3-31 04:49:37 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:34 | 只看該作者
https://doi.org/10.1007/978-3-662-28405-6rom . to .. The goal of this paper is to establish some basic structural properties of this (and other related) quasi-orders. For instance, we show that ? has antichains of arbitrarily large finite size. It appears to be an interesting question to determine if ? has an infinite antichain.
57#
發(fā)表于 2025-3-31 11:32:48 | 只看該作者
On Edge-maps whose Inverse Preserves Flows or Tensions,rom . to .. The goal of this paper is to establish some basic structural properties of this (and other related) quasi-orders. For instance, we show that ? has antichains of arbitrarily large finite size. It appears to be an interesting question to determine if ? has an infinite antichain.
58#
發(fā)表于 2025-3-31 15:11:34 | 只看該作者
https://doi.org/10.1007/978-1-4039-7854-7 is also well covered and has the same independence number. The notion of a 1-well-covered graph was introduced by J. Staples in her 1975 dissertation and was further investigated by M. Pinter in 1991 and later. In this note the 1-well-covered graphs with no 4-cycles are characterized.
59#
發(fā)表于 2025-3-31 20:00:31 | 只看該作者
60#
發(fā)表于 2025-3-31 23:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂平县| 新宾| 邯郸市| 綦江县| 板桥市| 沭阳县| 康马县| 玉田县| 孟州市| 漯河市| 新建县| 云梦县| 望城县| 灵璧县| 衡阳市| 孝义市| 夏河县| 南澳县| 金湖县| 淅川县| 鄂温| 阆中市| 福安市| 财经| 黑水县| 平远县| 托克逊县| 萍乡市| 边坝县| 凌海市| 宿松县| 嘉鱼县| 大邑县| 黄大仙区| 辽中县| 准格尔旗| 长垣县| 菏泽市| 六枝特区| 广安市| 城固县|