找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Menthol
41#
發(fā)表于 2025-3-28 17:11:46 | 只看該作者
https://doi.org/10.1007/978-3-8350-9611-0n problems for cographs admit polynomial time algorithms and forbidden induced subgraph characterizations, even for the list version of the problems. Cographs are the largest natural class of graphs that have been shown to have this property. We bound the size of a biggest minimal .obstruction cogra
42#
發(fā)表于 2025-3-28 18:57:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:15:27 | 只看該作者
Missile and Space Projects Guide 1962h that for every . ∈ . (.) ? . there exists an arc from . to .. A digraph . is called . (resp. left-pretransitive) when (.) ∈ .(.) and (.) ∈ .(.) implies (.) ∈ .(.) or (.) ∈ .(.) (resp. (.) ∈ .(.) and (.) ∈ .(.) implies (.) ∈ .(.) or (.) ∈ .(.)). These concepts were introduced by P. Duchet in 1980.
44#
發(fā)表于 2025-3-29 04:04:44 | 只看該作者
https://doi.org/10.1007/978-1-4899-6427-4r a graph . is denoted by π(.). For instance, by the famous 1906 theorem of Thue, π(.) = 3 if . is a simple path with at least 4 vertices. This implies that π(.) ≤ 4 if Δ(.) ≤ 2. But how large can π(.) be for cubic graphs, .-trees, or planar graphs? This paper is a small survey of problems and resul
45#
發(fā)表于 2025-3-29 09:03:54 | 只看該作者
https://doi.org/10.1007/978-1-4039-7854-7d in 1970 by M.D. Plummer who called such graphs well-covered. Whereas determining the independence number of an arbitrary graph is NP-complete, for a well-covered graph one can simply apply the greedy algorithm. A well-covered graph . is 1-well-covered if and only if, for every vertex . in ., . — .
46#
發(fā)表于 2025-3-29 14:24:34 | 只看該作者
https://doi.org/10.1057/9780230233546est intersecting family . of independent .-subsets of .(.) may be obtained by taking all independent .-subsets containing some particular vertex..In this paper, we show that if . consists of one path . raised to the power .. ≥ 1, and . cycles .., .., ..., .. raised to the powers .., .., ..., .. resp
47#
發(fā)表于 2025-3-29 17:35:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:43:33 | 只看該作者
ower and upper bounds, functions of the order . of . and ⊕ ∈ ?, + ×, /. In 24 out of 48 cases simple bounds are obtained and proved by the system. In 21 more cases, the system provides bounds, 16 of which are proved by hand.
49#
發(fā)表于 2025-3-30 02:27:51 | 只看該作者
50#
發(fā)表于 2025-3-30 07:17:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 财经| 清镇市| 乌拉特前旗| 温宿县| 西乡县| 东宁县| 黔江区| 鲁甸县| 福海县| 尖扎县| 土默特左旗| 靖安县| 青田县| 抚州市| 兴化市| 盖州市| 华亭县| 梁河县| 和政县| 腾冲县| 繁昌县| 清河县| 油尖旺区| 宁津县| 清水河县| 囊谦县| 石门县| 平阳县| 南宁市| 黄大仙区| 栖霞市| 桃园市| 兴安盟| 景德镇市| 湟源县| 宜川县| 循化| 怀安县| 嫩江县| 三门县|