找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-27 00:08:37 | 只看該作者
32#
發(fā)表于 2025-3-27 03:18:24 | 只看該作者
https://doi.org/10.1007/978-3-030-57219-8hm tests the subgraph of the given graph G for planarity and if the subgraph fails the test, it deletes a minimum number of edges necessary for planarization. The subgraph has one vertex at the beginning, and the number of its vertices is increased one by one until all the vertices of G are included
33#
發(fā)表于 2025-3-27 07:15:40 | 只看該作者
34#
發(fā)表于 2025-3-27 11:44:06 | 只看該作者
https://doi.org/10.1007/978-94-011-2759-2s of central trees have been clarified. In this paper, in connection with the critical sets of the edge set of a graph, some new theorems on central trees of the graph are presented. Also, a few examples are included to illustrate the applications of these theorems.
35#
發(fā)表于 2025-3-27 16:20:03 | 只看該作者
36#
發(fā)表于 2025-3-27 20:12:29 | 只看該作者
37#
發(fā)表于 2025-3-28 01:57:03 | 只看該作者
38#
發(fā)表于 2025-3-28 04:18:03 | 只看該作者
A status on the linear arboricity,riant first arose in a study [10] of information retrieval in file systems. A quite similar covering invariant which is well known to the linear arboricity is the . of a graph, which is defined as the minimum number of forests whose union is G. Nash-Williams [11] determined the arboricity of any gra
39#
發(fā)表于 2025-3-28 06:18:48 | 只看該作者
On centrality functions of a graph,he vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated..For a weakly c
40#
發(fā)表于 2025-3-28 13:12:45 | 只看該作者
Canonical decompositions of symmetric submodular systems,. We examine the structures of symmetric submodular systems and provide a decomposition theory of symmetric submodular systems. The theory is a generalization of the decomposition theory of 2-connected graphs developed by W. T. Tutte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
农安县| 琼中| 通渭县| 大姚县| 延川县| 恭城| 丹阳市| 高要市| 延吉市| 和顺县| 罗城| 巴林左旗| 海盐县| 融水| 黄浦区| 竹溪县| 阿鲁科尔沁旗| 同仁县| 宜城市| 三都| 瑞昌市| 绥中县| 海门市| 武胜县| 怀来县| 中卫市| 金湖县| 辉县市| 东兰县| 鄯善县| 和顺县| 辽阳县| 房山区| 太仆寺旗| 乌兰县| 东乡| 左云县| 徐州市| 伊川县| 蕉岭县| 民丰县|