找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 粘上
21#
發(fā)表于 2025-3-25 06:40:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:39 | 只看該作者
Combinatorial problems on series-parallel graphs,These include (i) the decision problem, and (ii) the minimum edge (vertex) deletion problem both with respect to a property characterized by a finite number of forbidden graphs, and (iii) the generalized matching problem.
23#
發(fā)表于 2025-3-25 13:31:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:51 | 只看該作者
25#
發(fā)表于 2025-3-25 23:05:28 | 只看該作者
Characterization of polyhex graphs as applied to chemistry,s for characterizing the polyhex graphs are described and discussed, including the topological index, characteristic polynomial, sextet polvnomial, etc. Enumeration of the number of the maximum matching (or Kekulé patterns) is also discussed.
26#
發(fā)表于 2025-3-26 02:38:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:32 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:56 | 只看該作者
Minimally Invasive Total Joint Arthroplastyhe vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated..For a weakly c
30#
發(fā)表于 2025-3-26 16:58:11 | 只看該作者
https://doi.org/10.1007/978-1-4939-1317-6. We examine the structures of symmetric submodular systems and provide a decomposition theory of symmetric submodular systems. The theory is a generalization of the decomposition theory of 2-connected graphs developed by W. T. Tutte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰镇市| 务川| 南澳县| 晋宁县| 宁蒗| 靖远县| 双鸭山市| 三穗县| 丹寨县| 阿城市| 博爱县| 永定县| 个旧市| 中宁县| 伊金霍洛旗| 塘沽区| 乌拉特后旗| 河西区| 射洪县| 云龙县| 旬阳县| 政和县| 济阳县| 通城县| 琼海市| 麻江县| 罗平县| 漠河县| 达州市| 桑日县| 台北市| 无锡市| 古蔺县| 天镇县| 莒南县| 江阴市| 鹤壁市| 三穗县| 墨江| 舒兰市| 南康市|