找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 粘上
21#
發(fā)表于 2025-3-25 06:40:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:39 | 只看該作者
Combinatorial problems on series-parallel graphs,These include (i) the decision problem, and (ii) the minimum edge (vertex) deletion problem both with respect to a property characterized by a finite number of forbidden graphs, and (iii) the generalized matching problem.
23#
發(fā)表于 2025-3-25 13:31:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:51 | 只看該作者
25#
發(fā)表于 2025-3-25 23:05:28 | 只看該作者
Characterization of polyhex graphs as applied to chemistry,s for characterizing the polyhex graphs are described and discussed, including the topological index, characteristic polynomial, sextet polvnomial, etc. Enumeration of the number of the maximum matching (or Kekulé patterns) is also discussed.
26#
發(fā)表于 2025-3-26 02:38:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:32 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:56 | 只看該作者
Minimally Invasive Total Joint Arthroplastyhe vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated..For a weakly c
30#
發(fā)表于 2025-3-26 16:58:11 | 只看該作者
https://doi.org/10.1007/978-1-4939-1317-6. We examine the structures of symmetric submodular systems and provide a decomposition theory of symmetric submodular systems. The theory is a generalization of the decomposition theory of 2-connected graphs developed by W. T. Tutte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 合肥市| 永年县| 民权县| 绥阳县| 梧州市| 桃园县| 大方县| 浠水县| 固镇县| 疏勒县| 南昌县| 宝鸡市| 肇州县| 铁力市| 池州市| 邵阳市| 天峻县| 元氏县| 宜宾县| 昌宁县| 香港| 安泽县| 仙游县| 吉林省| 金门县| 光泽县| 沭阳县| 石楼县| 隆回县| 高邮市| 东港市| 正镶白旗| 永嘉县| 乌兰察布市| 澎湖县| 东海县| 平潭县| 邵武市| 桦川县| 无为县|