找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 小客車
51#
發(fā)表于 2025-3-30 08:19:43 | 只看該作者
Milling a Graph with Turn Costs: A Parameterized Complexity Perspectiveits vertices with a minimum number of ., as specified in the graph model by a 0/1 turncost function .. at each vertex . giving, for each ordered pair of edges (.,.) incident at ., the . at . of a walk that enters the vertex on edge . and departs on edge .. We describe an initial study of the parameterized complexity of the problem.
52#
發(fā)表于 2025-3-30 15:20:37 | 只看該作者
53#
發(fā)表于 2025-3-30 19:45:15 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:00 | 只看該作者
https://doi.org/10.1007/978-94-009-8198-0ected cubic graphs. We also present dynamic programming algorithms to count the number of edge .-colorings and total .-colorings for graphs of bounded pathwidth. These algorithms can be used to obtain fast exact exponential time algorithms for counting edge .-colorings and total .-colorings on graphs, if . is small.
55#
發(fā)表于 2025-3-31 03:11:11 | 只看該作者
https://doi.org/10.1007/978-3-662-68035-3mutation graphs. Our algorithm runs in linear time. We stress that the cutwidth problem is NP-complete on bipartite graphs and its computational complexity is open even on small subclasses of permutation graphs, such as trivially perfect graphs.
56#
發(fā)表于 2025-3-31 07:29:31 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:54 | 只看該作者
58#
發(fā)表于 2025-3-31 14:02:31 | 只看該作者
Computing the Cutwidth of Bipartite Permutation Graphs in Linear Timemutation graphs. Our algorithm runs in linear time. We stress that the cutwidth problem is NP-complete on bipartite graphs and its computational complexity is open even on small subclasses of permutation graphs, such as trivially perfect graphs.
59#
發(fā)表于 2025-3-31 17:36:02 | 只看該作者
Generalized Graph Clustering: Recognizing (,,,)-Cluster Graphsr of false positives and negatives in total, while bounding the number of these locally for each cluster by . and .. We show that recognizing (.,.)-cluster graphs is NP-complete when . and . are input. On the positive side, we show that (0,.)-cluster, (.,1)-cluster, (.,2)-cluster, and (1,3)-cluster graphs can be recognized in polynomial time.
60#
發(fā)表于 2025-3-31 23:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红原县| 万安县| 南投市| 宁海县| 武威市| 景德镇市| 雅安市| 铁岭市| 久治县| 汾西县| 资溪县| 上杭县| 日土县| 舟曲县| 呈贡县| 榆林市| 苍溪县| 大悟县| 崇义县| 连云港市| 博野县| 仁布县| 渝北区| 桦甸市| 哈密市| 鹤岗市| 新兴县| 突泉县| 喜德县| 广丰县| 资源县| 通道| 铜陵市| 枝江市| 镇坪县| 麻栗坡县| 上思县| 宜都市| 陆河县| 林甸县| 富阳市|