找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 小客車
11#
發(fā)表于 2025-3-23 12:47:44 | 只看該作者
The Longest Path Problem is Polynomial on Cocomparability Graphscomplete on general graphs and, in fact, on every class of graphs that the Hamiltonian path problem is NP-complete. Polynomial solutions for the longest path problem have recently been proposed for weighted trees, ptolemaic graphs, bipartite permutation graphs, interval graphs, and some small classe
12#
發(fā)表于 2025-3-23 17:54:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:24 | 只看該作者
On Stable Matchings and Flowsthat there always exists a stable flow and generalize the lattice structure of stable marriages to stable flows. Our main tool is a straightforward reduction of the stable flow problem to stable allocations.
14#
發(fā)表于 2025-3-24 00:04:50 | 只看該作者
15#
發(fā)表于 2025-3-24 03:18:39 | 只看該作者
16#
發(fā)表于 2025-3-24 10:31:23 | 只看該作者
Solving Capacitated Dominating Set by Using Covering by Subsets and Maximum Matchingit has capacity to dominate. Cygan et al. showed in 2009 that this problem can be solved in . or in ..(1.89.) time using maximum matching algorithm. An alternative way to solve this problem is to use dynamic programming over subsets. By exploiting structural properties of instances that can not be s
17#
發(fā)表于 2025-3-24 14:13:34 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:48 | 只看該作者
19#
發(fā)表于 2025-3-24 22:52:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:17:34 | 只看該作者
Graphs that Admit Right Angle Crossing Drawingsh with . vertices admits a RAC drawing with at most 1 bend or 2 bends per edge, then the number of edges is at most 6.5. and 74.2., respectively. This is a strengthening of a recent result of Didimo ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
靖宇县| 晋江市| 云南省| 西平县| 镇江市| 蓝田县| 二连浩特市| 彭泽县| 苏州市| 凤山县| 盈江县| 井研县| 萨迦县| 德格县| 镇安县| 洞口县| 屏东市| 武冈市| 兖州市| 萨嘎县| 黑河市| 茶陵县| 行唐县| 佛教| 肥东县| 大庆市| 长岭县| 惠州市| 铜陵市| 济阳县| 长子县| 永靖县| 兴化市| 柞水县| 泸州市| 涡阳县| 满城县| 旺苍县| 海阳市| 商洛市| 武定县|