找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Daidzein
31#
發(fā)表于 2025-3-26 21:31:48 | 只看該作者
A Logarithmic Bound for?Simultaneous Embeddings of?Planar Graphsa (crossing-free) straight-line embedding with vertices placed at points of .. A . is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there
32#
發(fā)表于 2025-3-27 02:37:11 | 只看該作者
33#
發(fā)表于 2025-3-27 06:53:01 | 只看該作者
Computing Hive Plots: A Combinatorial Frameworkconnecting their respective endpoints. In previous work on hive plots, assignment to an axis and vertex positions on each axis were determined based on selected vertex attributes and the order of axes was prespecified. Here, we present a new framework focusing on combinatorial aspects of these drawi
34#
發(fā)表于 2025-3-27 10:56:25 | 只看該作者
35#
發(fā)表于 2025-3-27 14:04:27 | 只看該作者
Parameterized and?Approximation Algorithms for?the?Maximum Bimodal Subgraph Problemigraph is bimodal if all its vertices are bimodal. Bimodality is at the heart of many types of graph layouts, such as upward drawings, level-planar drawings, and L-drawings. If the graph is not bimodal, the . problem asks for an embedding-preserving bimodal subgraph with the maximum number of edges.
36#
發(fā)表于 2025-3-27 20:53:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:43:04 | 只看該作者
38#
發(fā)表于 2025-3-28 06:03:21 | 只看該作者
Migration in Irish History 1607-2007 of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph . with at most . bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of ., or . plus the vertex cover number of ..
39#
發(fā)表于 2025-3-28 09:19:00 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂荣县| 武宣县| 泰和县| 吉安市| 北宁市| 锦州市| 韶山市| 芜湖县| 龙江县| 南皮县| 邻水| 宿松县| 黄大仙区| 汉沽区| 钦州市| 白玉县| 泗阳县| 山阴县| 浠水县| 工布江达县| 兰溪市| 遂平县| 安顺市| 神农架林区| 喜德县| 措勤县| 吐鲁番市| 浮梁县| 马龙县| 卓尼县| 姜堰市| 浠水县| 保靖县| 漳平市| 竹溪县| 泰宁县| 芜湖市| 和政县| 莱芜市| 额尔古纳市| 吉林市|