找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 13:21:39 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:55 | 只看該作者
https://doi.org/10.1007/978-3-322-81174-5.-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number
13#
發(fā)表于 2025-3-23 19:49:21 | 只看該作者
14#
發(fā)表于 2025-3-23 23:01:23 | 只看該作者
15#
發(fā)表于 2025-3-24 06:25:37 | 只看該作者
16#
發(fā)表于 2025-3-24 07:14:48 | 只看該作者
17#
發(fā)表于 2025-3-24 12:20:48 | 只看該作者
https://doi.org/10.1007/978-1-349-18291-6a (crossing-free) straight-line embedding with vertices placed at points of .. A . is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there
18#
發(fā)表于 2025-3-24 16:07:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-5842-9-graph embeddings are weighted versions of Tutte embeddings, where solving a linear system places vertices at a minimum-energy configuration for a system of springs. A major drawback of the unweighted Tutte embedding is that it often results in drawings with exponential area. We present a number of
19#
發(fā)表于 2025-3-24 20:31:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:34 | 只看該作者
https://doi.org/10.1007/978-3-322-93701-8ultigraphs orthogonally, using few bends, few crossings, and small area. Our pipeline computes an initial graph layout, then removes overlaps between the rectangular nodes, routes the edges, orders the edges, and nudges them, that is, moves edge segments in order to balance the inter-edge distances.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明星| 浮梁县| 潢川县| 潜山县| 镇康县| 盘山县| 钦州市| 张家川| 驻马店市| 宁夏| 海晏县| 朔州市| 沁阳市| 漯河市| 达拉特旗| 辽宁省| 玛沁县| 古蔺县| 白山市| 玉龙| 林周县| 青岛市| 曲沃县| 洛阳市| 加查县| 民县| 乌兰县| 长丰县| 久治县| 抚松县| 乳山市| 库车县| 紫云| 沙洋县| 连州市| 施甸县| 富平县| 卓尼县| 朔州市| 岐山县| 九龙县|