找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:46:53 | 只看該作者
Rectilinear Planarity of?Partial 2-Trees are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced in 1998 to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.
42#
發(fā)表于 2025-3-28 19:38:49 | 只看該作者
-Orientations with?Few Transitive Edgesr of transitive edges with respect to unconstrained .-orientations computed via classical .-numbering algorithms. Moreover, focusing on popular graph drawing algorithms that apply an .-orientation as a preliminary step, we show that reducing the number of transitive edges leads to drawings that are much more compact.
43#
發(fā)表于 2025-3-29 01:34:23 | 只看該作者
Migrant Domestic Workers in the Middle Eastss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
44#
發(fā)表于 2025-3-29 03:26:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:13 | 只看該作者
https://doi.org/10.1057/9781137308634. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
46#
發(fā)表于 2025-3-29 13:52:18 | 只看該作者
Mutual Witness Gabriel Drawings of?Complete Bipartite Graphsss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
47#
發(fā)表于 2025-3-29 16:07:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:15 | 只看該作者
Planar Confluent Orthogonal Drawings of?4-Modal Digraphs. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
49#
發(fā)表于 2025-3-30 03:22:48 | 只看該作者
50#
發(fā)表于 2025-3-30 07:13:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 许昌县| 平度市| 鄂托克旗| 普格县| 德兴市| 娱乐| 儋州市| 禹城市| 应用必备| 财经| 隆昌县| 沛县| 武川县| 堆龙德庆县| 界首市| 大埔县| 静安区| 华蓥市| 洪泽县| 潼南县| 内丘县| 英德市| 阿克陶县| 云和县| 水城县| 盐津县| 阳泉市| 清镇市| 巧家县| 南投县| 耒阳市| 独山县| 武山县| 上犹县| 博湖县| 微山县| 长沙市| 清原| 阿尔山市| 南溪县|