找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 55153|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:30:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Graph Drawing and Network Visualization
編輯Patrizio Angelini,Reinhard von Hanxleden
視頻videohttp://file.papertrans.cn/388/387918/387918.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: ;
出版日期Conference proceedings 2023
版次1
doihttps://doi.org/10.1007/978-3-031-22203-0
isbn_softcover978-3-031-22202-3
isbn_ebook978-3-031-22203-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書(shū)目名稱Graph Drawing and Network Visualization影響因子(影響力)




書(shū)目名稱Graph Drawing and Network Visualization影響因子(影響力)學(xué)科排名




書(shū)目名稱Graph Drawing and Network Visualization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Graph Drawing and Network Visualization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Graph Drawing and Network Visualization被引頻次




書(shū)目名稱Graph Drawing and Network Visualization被引頻次學(xué)科排名




書(shū)目名稱Graph Drawing and Network Visualization年度引用




書(shū)目名稱Graph Drawing and Network Visualization年度引用學(xué)科排名




書(shū)目名稱Graph Drawing and Network Visualization讀者反饋




書(shū)目名稱Graph Drawing and Network Visualization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:04:46 | 只看該作者
Compatible Spanning Trees in?Simple Drawings of? . and . be the . that has a vertex for each element in . and two vertices are adjacent if and only if the corresponding trees are compatible. We show, on the one hand, that . is connected if . is a cylindrical, monotone, or strongly c-monotone drawing. On the other hand, we show that the subgraph o
板凳
發(fā)表于 2025-3-22 01:09:56 | 只看該作者
Mutual Witness Gabriel Drawings of?Complete Bipartite Graphsnts. A pair . of vertex-disjoint straight-line drawings form a mutual witness Gabriel drawing when, for ., any two vertices . and . of . are adjacent if and only if their Gabriel disk does not contain any vertex of .. We characterize the pairs . of complete bipartite graphs that admit a mutual witne
地板
發(fā)表于 2025-3-22 06:19:14 | 只看該作者
Empty Triangles in?Generalized Twisted Drawings of?dpoints, and edges intersect at most once (either in a proper crossing or in a shared endpoint). Simple drawings are generalized twisted if there is a point?. such that every ray emanating from?. crosses every edge of the drawing at most once and there is a ray emanating from?. which crosses every e
5#
發(fā)表于 2025-3-22 08:58:23 | 只看該作者
Shooting Stars in?Simple Drawings of?an open question whether every simple drawing of a complete bipartite graph . contains a plane spanning tree as a subdrawing. We answer this question to the positive by showing that for every simple drawing of?. and for every vertex . in that drawing, the drawing contains a ., that is, a plane spann
6#
發(fā)表于 2025-3-22 16:35:41 | 只看該作者
7#
發(fā)表于 2025-3-22 19:29:15 | 只看該作者
8#
發(fā)表于 2025-3-22 22:25:56 | 只看該作者
9#
發(fā)表于 2025-3-23 03:50:51 | 只看該作者
Planar Confluent Orthogonal Drawings of?4-Modal Digraphsending with a horizontal segment. Edges may overlap in their first or last segment, but must not intersect otherwise. PCODs can be seen as a directed variant of Kandinsky drawings or as planar L-drawings of subdivisions of digraphs. The maximum number of subdivision vertices in an edge is then the .
10#
發(fā)表于 2025-3-23 06:38:27 | 只看該作者
Unit-length Rectangular Drawings of?Graphse segments, and faces are drawn as rectangles. Sometimes this latter constraint is relaxed for the outer face. In this paper, we study rectangular drawings in which the edges have unit length. We show a complexity dichotomy for the problem of deciding the existence of a unit-length rectangular drawi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 平顶山市| 共和县| 苏尼特右旗| 肥城市| 台江县| 黔江区| 长治县| 富平县| 修文县| 津南区| 潮州市| 清苑县| 竹山县| 沙洋县| 申扎县| 平泉县| 苍山县| 同仁县| 台北市| 宝丰县| 临沧市| 定远县| 怀柔区| 绍兴市| 凭祥市| 凌云县| 湄潭县| 六枝特区| 苏尼特右旗| 浏阳市| 天峨县| 广饶县| 鹤峰县| 新民市| 绥滨县| 绍兴县| 峡江县| 会昌县| 金平| 特克斯县|