找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 共用
41#
發(fā)表于 2025-3-28 16:22:21 | 只看該作者
42#
發(fā)表于 2025-3-28 21:49:25 | 只看該作者
A Short Proof of?the?Non-biplanarity of?Battle, Harary, and Kodama (1962) and independently Tutte (1963) proved that the complete graph with nine vertices is not biplanar. Aiming towards simplicity and brevity, in this note we provide a short proof of this claim.
43#
發(fā)表于 2025-3-29 00:46:40 | 只看該作者
One-Bend Drawings of?Outerplanar Graphs Inside Simple PolygonsWe consider the problem of drawing an outerplanar graph with . vertices with at most one bend per edge if the outer face is already drawn as a simple polygon. We prove that it can be decided in .(.) time if such a drawing exists, where . is the number of interior edges. In the positive case, we can also compute such a drawing.
44#
發(fā)表于 2025-3-29 05:13:45 | 只看該作者
Ralph T. Manktelow M.D., F.R.C.S.(C)torus. Barycentric interpolation cannot be applied directly in this setting, because the linear systems defining intermediate vertex positions are not necessarily solvable. We describe a simple scaling strategy that circumvents this issue. Computing the appropriate scaling requires . time, after whi
45#
發(fā)表于 2025-3-29 07:49:23 | 只看該作者
46#
發(fā)表于 2025-3-29 12:19:41 | 只看該作者
Planar and?Toroidal Morphs Made Easiertorus. Barycentric interpolation cannot be applied directly in this setting, because the linear systems defining intermediate vertex positions are not necessarily solvable. We describe a simple scaling strategy that circumvents this issue. Computing the appropriate scaling requires . time, after whi
47#
發(fā)表于 2025-3-29 17:11:54 | 只看該作者
Planar Straight-Line Realizations of?2-Trees with?Prescribed Edge Lengthsthermore, we consider the . problem for weighted maximal outerplanar graphs and prove it to be linear-time solvable if their dual tree is a path, and cubic-time solvable if their dual tree is a caterpillar. Finally, we prove that the . problem for weighted 2-trees is slice-wise polynomial in the len
48#
發(fā)表于 2025-3-29 20:10:06 | 只看該作者
1865-0929 ld in Kaunas, Lithuania, in October 2013. The 34 papers presented were carefully reviewed and selected from 60 submissions. The papers focus on the following topics: information systems, business intelligence, software engineering, and IT applications.978-3-642-41946-1978-3-642-41947-8Series ISSN 18
49#
發(fā)表于 2025-3-30 03:09:46 | 只看該作者
50#
發(fā)表于 2025-3-30 04:02:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪泽县| 宝鸡市| 农安县| 伊春市| 襄汾县| 南通市| 航空| 印江| 拉萨市| 阿拉善左旗| 肇东市| 吴堡县| 丹东市| 体育| 栖霞市| 五常市| 长宁县| 长治市| 吉水县| 饶平县| 屯留县| 灌云县| 辽宁省| 武功县| 娄烦县| 连云港市| 湖南省| 昆明市| 平塘县| 韩城市| 来宾市| 奉节县| 遂宁市| 天峨县| 开阳县| 色达县| 花垣县| 梧州市| 县级市| 黑水县| 凤山县|