找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 共用
21#
發(fā)表于 2025-3-25 05:06:41 | 只看該作者
22#
發(fā)表于 2025-3-25 11:04:49 | 只看該作者
From Tutte to Floater and Gotsman: On the Resolution of Planar Straight-Line Drawings and Morphs-line morphs are among the most popular graph drawing algorithms. Surprisingly, little is known about the resolution of the drawings they produce. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater’s algor
23#
發(fā)表于 2025-3-25 11:39:06 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:20 | 只看該作者
25#
發(fā)表于 2025-3-25 22:18:54 | 只看該作者
Upward Planar Drawings with?Three and?More Slopesgraph with maximum in- and outdegree at most . admits such a drawing with . slopes. We show that this is in general NP-hard to decide for outerplanar graphs (.) and planar graphs (.). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furtherm
26#
發(fā)表于 2025-3-26 02:21:38 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:25:15 | 只看該作者
29#
發(fā)表于 2025-3-26 12:59:24 | 只看該作者
A Framework of Microtectonic Studies, of a planarization, i.e., a planar representation of a graph with crossings replaced by dummy vertices. The evaluated heuristics include variations and combinations of the well-known planarization method, the recently implemented star reinsertion method, and a new approach proposed herein: the mixe
30#
發(fā)表于 2025-3-26 18:47:32 | 只看該作者
https://doi.org/10.1007/978-3-642-96436-7rarily and the other edges towards . results in a consistent orientation of the crossings. So far, fan-planar drawings have only been considered in the context of simple drawings, where any two edges share at most one point, including endpoints. We show that every non-simple fan-planar drawing can b
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀仁县| 巴马| 德保县| 克什克腾旗| 威信县| 牟定县| 浙江省| 万安县| 黔东| 鄄城县| 来宾市| 浪卡子县| 荔浦县| 滦南县| 漾濞| 辉南县| 兰溪市| 峡江县| 新郑市| 苏尼特右旗| 芒康县| 南漳县| 息烽县| 广南县| 平和县| 修武县| 上饶市| 阿荣旗| 延川县| 齐齐哈尔市| 临汾市| 齐河县| 汉寿县| 敦煌市| 孟州市| 易门县| 习水县| 芒康县| 达孜县| 曲麻莱县| 宁阳县|