找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 共用
41#
發(fā)表于 2025-3-28 16:22:21 | 只看該作者
42#
發(fā)表于 2025-3-28 21:49:25 | 只看該作者
A Short Proof of?the?Non-biplanarity of?Battle, Harary, and Kodama (1962) and independently Tutte (1963) proved that the complete graph with nine vertices is not biplanar. Aiming towards simplicity and brevity, in this note we provide a short proof of this claim.
43#
發(fā)表于 2025-3-29 00:46:40 | 只看該作者
One-Bend Drawings of?Outerplanar Graphs Inside Simple PolygonsWe consider the problem of drawing an outerplanar graph with . vertices with at most one bend per edge if the outer face is already drawn as a simple polygon. We prove that it can be decided in .(.) time if such a drawing exists, where . is the number of interior edges. In the positive case, we can also compute such a drawing.
44#
發(fā)表于 2025-3-29 05:13:45 | 只看該作者
Ralph T. Manktelow M.D., F.R.C.S.(C)torus. Barycentric interpolation cannot be applied directly in this setting, because the linear systems defining intermediate vertex positions are not necessarily solvable. We describe a simple scaling strategy that circumvents this issue. Computing the appropriate scaling requires . time, after whi
45#
發(fā)表于 2025-3-29 07:49:23 | 只看該作者
46#
發(fā)表于 2025-3-29 12:19:41 | 只看該作者
Planar and?Toroidal Morphs Made Easiertorus. Barycentric interpolation cannot be applied directly in this setting, because the linear systems defining intermediate vertex positions are not necessarily solvable. We describe a simple scaling strategy that circumvents this issue. Computing the appropriate scaling requires . time, after whi
47#
發(fā)表于 2025-3-29 17:11:54 | 只看該作者
Planar Straight-Line Realizations of?2-Trees with?Prescribed Edge Lengthsthermore, we consider the . problem for weighted maximal outerplanar graphs and prove it to be linear-time solvable if their dual tree is a path, and cubic-time solvable if their dual tree is a caterpillar. Finally, we prove that the . problem for weighted 2-trees is slice-wise polynomial in the len
48#
發(fā)表于 2025-3-29 20:10:06 | 只看該作者
1865-0929 ld in Kaunas, Lithuania, in October 2013. The 34 papers presented were carefully reviewed and selected from 60 submissions. The papers focus on the following topics: information systems, business intelligence, software engineering, and IT applications.978-3-642-41946-1978-3-642-41947-8Series ISSN 18
49#
發(fā)表于 2025-3-30 03:09:46 | 只看該作者
50#
發(fā)表于 2025-3-30 04:02:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上虞市| 丰镇市| 神农架林区| 林芝县| 周至县| 西贡区| 盐边县| 平乡县| 兴义市| 桓仁| 高阳县| 和林格尔县| 黄龙县| 阿拉尔市| 龙口市| 利津县| 建阳市| 吉林省| 上虞市| 福海县| 金阳县| 南丹县| 台前县| 洮南市| 平顺县| 龙川县| 太和县| 贵德县| 澄江县| 临城县| 安多县| 松溪县| 内江市| 鄂托克前旗| 志丹县| 花莲县| 洛阳市| 永善县| 金沙县| 博湖县| 西城区|