找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 共用
21#
發(fā)表于 2025-3-25 05:06:41 | 只看該作者
22#
發(fā)表于 2025-3-25 11:04:49 | 只看該作者
From Tutte to Floater and Gotsman: On the Resolution of Planar Straight-Line Drawings and Morphs-line morphs are among the most popular graph drawing algorithms. Surprisingly, little is known about the resolution of the drawings they produce. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater’s algor
23#
發(fā)表于 2025-3-25 11:39:06 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:20 | 只看該作者
25#
發(fā)表于 2025-3-25 22:18:54 | 只看該作者
Upward Planar Drawings with?Three and?More Slopesgraph with maximum in- and outdegree at most . admits such a drawing with . slopes. We show that this is in general NP-hard to decide for outerplanar graphs (.) and planar graphs (.). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furtherm
26#
發(fā)表于 2025-3-26 02:21:38 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:25:15 | 只看該作者
29#
發(fā)表于 2025-3-26 12:59:24 | 只看該作者
A Framework of Microtectonic Studies, of a planarization, i.e., a planar representation of a graph with crossings replaced by dummy vertices. The evaluated heuristics include variations and combinations of the well-known planarization method, the recently implemented star reinsertion method, and a new approach proposed herein: the mixe
30#
發(fā)表于 2025-3-26 18:47:32 | 只看該作者
https://doi.org/10.1007/978-3-642-96436-7rarily and the other edges towards . results in a consistent orientation of the crossings. So far, fan-planar drawings have only been considered in the context of simple drawings, where any two edges share at most one point, including endpoints. We show that every non-simple fan-planar drawing can b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 海淀区| 山阳县| 江源县| 宝坻区| 溧阳市| 武邑县| 启东市| 黑山县| 五常市| 诏安县| 南安市| 咸宁市| 南漳县| 华容县| 偃师市| 许昌市| 诸城市| 河南省| 甘谷县| 靖西县| 日喀则市| 洛南县| 额尔古纳市| 老河口市| 辽源市| 玉龙| 阳西县| 辽宁省| 布拖县| 乌兰浩特市| 辽宁省| 余干县| 乌苏市| 开封县| 西峡县| 大埔县| 伊宁市| 定兴县| 绥滨县| 六安市|