找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Randomized
31#
發(fā)表于 2025-3-26 22:59:18 | 只看該作者
Morphing Planar Graphs While Preserving Edge Directionse drawings of the transformation remain simple and parallel with . (and .)? We prove that a transformation can always be found in the case of orthogonal drawings; however, when edges are allowed to be in one of three or more slopes the problem becomes NP-hard.
32#
發(fā)表于 2025-3-27 01:39:42 | 只看該作者
On Rectilinear Duals for Vertex-Weighted Plane Graphsn edge in .. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph . admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.
33#
發(fā)表于 2025-3-27 05:17:21 | 只看該作者
34#
發(fā)表于 2025-3-27 11:06:17 | 只看該作者
Two Trees Which Are Self–intersecting When Drawn Simultaneouslyn simultaneously using straight lines and without crossings within the same edge set. In this paper, we negatively answer one of the most often posted open questions namely whether any two trees with the same vertex set can be drawn simultaneously crossing-free in a straight line way.
35#
發(fā)表于 2025-3-27 15:43:03 | 只看該作者
Brian Henderson,David J. Kinahan,Jens Ducréerk set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.
36#
發(fā)表于 2025-3-27 20:59:00 | 只看該作者
37#
發(fā)表于 2025-3-28 01:16:40 | 只看該作者
Exact Crossing Minimizationrk set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.
38#
發(fā)表于 2025-3-28 04:32:31 | 只看該作者
Small Area Drawings of Outerplanar Graphserplanar drawings of general outerplanar graphs with .(..) area. Further, we study the interplay between the area requirements of the drawings of an outerplanar graph and the area requirements of a special class of drawings of its dual tree.
39#
發(fā)表于 2025-3-28 08:05:27 | 只看該作者
https://doi.org/10.1007/978-981-33-4876-9e drawings of the transformation remain simple and parallel with . (and .)? We prove that a transformation can always be found in the case of orthogonal drawings; however, when edges are allowed to be in one of three or more slopes the problem becomes NP-hard.
40#
發(fā)表于 2025-3-28 10:44:29 | 只看該作者
Contact Information Microformat: Hcardn edge in .. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph . admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成安县| 西丰县| 托里县| 鹤山市| 靖西县| 华池县| 宣恩县| 浏阳市| 定兴县| 古浪县| 雅安市| 山西省| 西乡县| 资源县| 东莞市| 义马市| 海盐县| 三门县| 湘阴县| 拉孜县| 濮阳县| 永济市| 凌云县| 平利县| 许昌县| 中江县| 苍南县| 山阳县| 如东县| 南川市| 繁峙县| 肥城市| 扬中市| 乐山市| 天水市| 贡山| 牙克石市| 白水县| 昆山市| 渑池县| 崇阳县|