找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Randomized
11#
發(fā)表于 2025-3-23 09:49:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:36:48 | 只看該作者
13#
發(fā)表于 2025-3-23 20:05:36 | 只看該作者
Transversal Structures on Triangulations, with Application to Straight-Line Drawingthe regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straight-line drawing algorithm for triangulations without non empty triangles, and more generally for 4-connected plane graphs with at least 4 border vertices. Takin
14#
發(fā)表于 2025-3-23 22:40:58 | 只看該作者
15#
發(fā)表于 2025-3-24 02:51:58 | 只看該作者
Two Trees Which Are Self–intersecting When Drawn Simultaneouslyhe goal is to simultaneously find a nice drawing for both of the sets. It has been found out that only restricted classes of planar graphs can be drawn simultaneously using straight lines and without crossings within the same edge set. In this paper, we negatively answer one of the most often posted
16#
發(fā)表于 2025-3-24 08:11:52 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:25 | 只看該作者
18#
發(fā)表于 2025-3-24 16:48:27 | 只看該作者
Brian Henderson,David J. Kinahan,Jens Ducréetudied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchma
19#
發(fā)表于 2025-3-24 19:25:52 | 只看該作者
https://doi.org/10.1007/978-3-030-96462-7ycle . of .. Is it possible to draw?. as a non-intersecting closed curve inside ., following the circles that correspond in . to the vertices of . and the strips that connect them? We show that this test can be done in polynomial time and study this problem in the framework of clustered planarity fo
20#
發(fā)表于 2025-3-25 00:39:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 鱼台县| 息烽县| 承德市| 青海省| 富锦市| 石城县| 桐庐县| 囊谦县| 泰安市| 商南县| 冀州市| 荆州市| 石台县| 土默特右旗| 平潭县| 安化县| 巴彦淖尔市| 望都县| 沅江市| 禄丰县| 九江县| 敖汉旗| 福泉市| 富川| 平顶山市| 寿光市| 恭城| 璧山县| 万源市| 沾益县| 堆龙德庆县| 甘南县| 东兰县| 隆化县| 油尖旺区| 新河县| 连州市| 南川市| 金秀| 大石桥市|