找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Awkward
51#
發(fā)表于 2025-3-30 12:16:57 | 只看該作者
Circle-Representations of Simple 4-Regular Planar Graphsn and touching points of the circles. In this paper, (a)?we affirmatively answer Lovász’s conjecture, if . is 3-connected, and, (b)?we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.
52#
發(fā)表于 2025-3-30 13:22:18 | 只看該作者
53#
發(fā)表于 2025-3-30 16:32:51 | 只看該作者
54#
發(fā)表于 2025-3-30 23:00:38 | 只看該作者
Dwaipayan Sinha,Satarupa Dey,Anjana Singh drawing algorithm that computes (0,..)-rectangle of influence drawings of binary trees in area ., where .(..) is a logarithmic function that tends to infinity as .. tends to zero, and . is the number of vertices of the input tree.
55#
發(fā)表于 2025-3-31 04:39:10 | 只看該作者
56#
發(fā)表于 2025-3-31 05:19:46 | 只看該作者
57#
發(fā)表于 2025-3-31 09:44:49 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:10 | 只看該作者
Implementing a Partitioned 2-Page Book Embedding Testing Algorithmnt implementation of this algorithm and show its effectiveness by performing a number of experimental tests. Because of the relationships [13] between .2. and clustered planarity we yield as a side effect an implementation of a clustered planarity testing where the graph has exactly two clusters.
59#
發(fā)表于 2025-3-31 20:08:28 | 只看該作者
The Approximate Rectangle of Influence Drawability Problem drawing algorithm that computes (0,..)-rectangle of influence drawings of binary trees in area ., where .(..) is a logarithmic function that tends to infinity as .. tends to zero, and . is the number of vertices of the input tree.
60#
發(fā)表于 2025-4-1 01:19:01 | 只看該作者
On Representing Graphs by Touching Cuboids representation by unit cubes. We also describe algorithms that compute proper contact representations of varying size cubes for relevant graph families. Finally, we give two new simple proofs of a theorem by Thomassen stating that all planar graphs have a proper contact representation by touching cuboids.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁武县| 泽州县| 元江| 泰兴市| 奉节县| 虎林市| 贵南县| 嘉峪关市| 怀柔区| 郴州市| 榕江县| 涞水县| 云安县| 应用必备| 榕江县| 新民市| 德保县| 浑源县| 长垣县| 青铜峡市| 许昌市| 祥云县| 清河县| 建始县| 双柏县| 黎城县| 抚远县| 沂源县| 湾仔区| 静安区| 泌阳县| 加查县| 泽库县| 鄯善县| 新源县| 武威市| 花莲市| 刚察县| 萨嘎县| 崇州市| 连城县|