找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Awkward
31#
發(fā)表于 2025-3-27 00:53:15 | 只看該作者
Open Rectangle-of-Influence Drawings of Non-triangulated Planar Graphseach edge. Despite recent interest of the graph drawing community in rectangle-of-influence drawings, no algorithm is known to test whether a graph has a planar open weak RI-drawing..In a recent paper, we showed how to test, for inner-triangulated planar graphs, whether they have a planar open weak
32#
發(fā)表于 2025-3-27 02:29:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:18:00 | 只看該作者
Planar Lombardi Drawings for Subcubic Graphss around every vertex. Our construction is based on the Koebe–Andreev–Thurston circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under M?bius transformations, defined using three-dimensional hyperbolic geometry. We also use circle packing to const
34#
發(fā)表于 2025-3-27 09:39:03 | 只看該作者
35#
發(fā)表于 2025-3-27 16:09:18 | 只看該作者
36#
發(fā)表于 2025-3-27 18:13:09 | 只看該作者
Planar Graphs as VPG-Graphsgraphs are ..-VPG and this was conjectured to be tight. We disprove this conjecture by showing that all planar graphs are ..-VPG. We also show that the 4-connected planar graphs are a subclass of the intersection graphs of Z-shapes (i.e., a special case of ..-VPG). Additionally, we demonstrate that
37#
發(fā)表于 2025-3-27 23:26:18 | 只看該作者
On Representing Graphs by Touching Cuboidsare represented by a proper contact between the cuboids representing their endvertices. Two cuboids make a proper contact if they intersect and their intersection is a non-zero area rectangle contained in the boundary of both. We study representations where all cuboids are unit cubes, where they are
38#
發(fā)表于 2025-3-28 05:00:03 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:40 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:01 | 只看該作者
Counting Plane Graphs: Cross-Graph Charging Schemes the set of all crossing-free straight-edge graphs that can be embedded over a specific point set..We then show how to apply the cross-graph charging-scheme method for graphs that allow certain types of crossings. Specifically, we consider graphs with no set of . pairwise-crossing edges (more common
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扶余县| 日喀则市| 鹤山市| 台安县| 宣化县| 海丰县| 伊宁市| 云安县| 南康市| 定结县| 乳源| 太仆寺旗| 玛曲县| 克什克腾旗| 安达市| 灯塔市| 台江县| 望城县| 即墨市| 兴和县| 德令哈市| 子长县| 余姚市| 平陆县| 安塞县| 桐梓县| 郴州市| 五河县| 攀枝花市| 临潭县| 扬州市| 京山县| 和田市| 阜康市| 涿鹿县| 塘沽区| 利辛县| 南澳县| 谷城县| 五华县| 孝感市|