找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Espionage
21#
發(fā)表于 2025-3-25 05:39:26 | 只看該作者
22#
發(fā)表于 2025-3-25 09:38:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:25:00 | 只看該作者
24#
發(fā)表于 2025-3-25 19:38:41 | 只看該作者
Kanak Sirari,Lokender Kashyap,C. M. Mehtaused in solving several planar graph drawing problems, including ., and . problems. A regular edge labeling of a plane graph . labels the edges of . so that the edge labels around any vertex show certain regular pattern. The drawing of . is obtained by using the combinatorial structures resulting fr
25#
發(fā)表于 2025-3-25 23:49:18 | 只看該作者
26#
發(fā)表于 2025-3-26 04:14:09 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:42 | 只看該作者
28#
發(fā)表于 2025-3-26 11:02:53 | 只看該作者
Johannes Gescher,Andreas Kapplerrizontal and vertical visibility. It is shown that, for .. has a representation with no rectangles having collinear sides if and only if .≤3 or .=3 and .≤4. More generally, it is shown that .. is a rectangle-visibility graph if and only if .≤4. Finally, it is shown that every bipartite rectangle-vis
29#
發(fā)表于 2025-3-26 13:42:15 | 只看該作者
Microbial Metatranscriptomics Belowgrounde. Two points . and . are visible if the straight-line segment . is not obstructed by any object. Two objects . ∈ . are called visible if there exist points . ∈ . ∈ . such that . is visible from .. We consider visibility only for a finite set of directions. In such a representation, the given graph
30#
發(fā)表于 2025-3-26 18:22:27 | 只看該作者
https://doi.org/10.1007/978-981-16-1923-6ensional visibility representation that has been studied is one in which each vertex of the graph maps to a closed rectangle in ?. and edges are expressed by vertical visibility between rectangles. The rectangles representing vertices are disjoint, contained in planes perpendicular to the .-axis, an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 颍上县| 长白| 崇明县| 和平区| 黄平县| 榆林市| 泌阳县| 罗平县| 济阳县| 都江堰市| 黄大仙区| 广汉市| 吴川市| 图木舒克市| 扬州市| 呼玛县| 依安县| 栾城县| 绥阳县| 安阳县| 苏尼特左旗| 郧西县| 新绛县| 遵义市| 霸州市| 瑞丽市| 蒙城县| 柳州市| 寿阳县| 康定县| 巴塘县| 湘潭县| 祁门县| 奎屯市| 铅山县| 杂多县| 苍梧县| 永济市| 凤山市| 噶尔县|