找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 33566|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:55:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Graph Drawing
編輯Roberto Tamassia,Ioannis G. Tollis
視頻videohttp://file.papertrans.cn/388/387899/387899.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: ;
出版日期Conference proceedings 1995
版次1
doihttps://doi.org/10.1007/3-540-58950-3
isbn_softcover978-3-540-58950-1
isbn_ebook978-3-540-49155-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書(shū)目名稱(chēng)Graph Drawing影響因子(影響力)




書(shū)目名稱(chēng)Graph Drawing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Graph Drawing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Graph Drawing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Graph Drawing被引頻次




書(shū)目名稱(chēng)Graph Drawing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Graph Drawing年度引用




書(shū)目名稱(chēng)Graph Drawing年度引用學(xué)科排名




書(shū)目名稱(chēng)Graph Drawing讀者反饋




書(shū)目名稱(chēng)Graph Drawing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:58 | 只看該作者
https://doi.org/10.1007/978-981-13-8383-0objective functions over the same polytope which is the intersection of the planar subgraph polytope [JM93], the .-connected subgraph polytope [S92] and the degree-constrained subgraph polytope. We point out why we are confident that a branch and cut algorithm for the new problem will be an implementable and useful tool in automatic graph drawing.
板凳
發(fā)表于 2025-3-22 01:09:17 | 只看該作者
,Grid layouts of block diagrams — bounding the number of bends in each connection (extended abstractds in every self-loop..A linear-time algorithm is described to construct a nonplanar drawing of any input, with at most 4 bends in each edge. We show inputs that have no drawing with at most 3 bends in every edge.
地板
發(fā)表于 2025-3-22 07:16:35 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:01 | 只看該作者
6#
發(fā)表于 2025-3-22 16:13:07 | 只看該作者
Kanak Sirari,Lokender Kashyap,C. M. Mehtao that the edge labels around any vertex show certain regular pattern. The drawing of . is obtained by using the combinatorial structures resulting from the edge labeling. In this paper, we survey these drawing algorithms and discuss some open problems.
7#
發(fā)表于 2025-3-22 18:45:56 | 只看該作者
Johannes Gescher,Andreas Kapplerd .≤4. More generally, it is shown that .. is a rectangle-visibility graph if and only if .≤4. Finally, it is shown that every bipartite rectangle-visibility graph on .≥4 vertices has at most 4.?12 edges.
8#
發(fā)表于 2025-3-22 21:26:11 | 只看該作者
Shatabisha Bhattacharjee,Tulika Prakasha less than ... If the maximum degree is three, then the drawing produced by our algorithm needs (./2+1)×./2 area and at most ./2+3 bends. These upper bounds match the upper bounds known for triconnected planar graphs of degree 3.
9#
發(fā)表于 2025-3-23 04:08:31 | 只看該作者
Gerald L. Hazelbauer,John S. Parkinson(.?1)/3], even if the other one is allowed to be infinite. In this paper we show that this bound is tight, by presenting a grid drawing algorithm that produces drawings of width [2(.?1)/3]. The height of the produced drawings is bounded by 4[2(.?1)/3]?1.
10#
發(fā)表于 2025-3-23 07:46:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆林| 眉山市| 凌海市| 玉田县| 定西市| 保靖县| 中西区| 南木林县| 建昌县| 肇东市| 咸丰县| 犍为县| 班戈县| 花莲县| 额敏县| 西吉县| 灵山县| 当雄县| 安顺市| 海南省| 双鸭山市| 涡阳县| 博客| 榆林市| 广南县| 九龙县| 芜湖县| 成安县| 开化县| 日喀则市| 肇源县| 张家界市| 保亭| 唐山市| 来宾市| 定边县| 武山县| 营山县| 武功县| 邹城市| 应城市|