找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:51:11 | 只看該作者
32#
發(fā)表于 2025-3-27 01:22:30 | 只看該作者
Matched Drawings of Planar Graphs the concept of such matched drawings, which are a relaxation of simultaneous geometric embeddings with mapping. We study which classes of graphs allow matched drawings and show that (.) two 3-connected planar graphs or a 3-connected planar graph and a tree may not be matched drawable, while (.) two
33#
發(fā)表于 2025-3-27 06:58:51 | 只看該作者
34#
發(fā)表于 2025-3-27 12:51:11 | 只看該作者
35#
發(fā)表于 2025-3-27 15:17:22 | 只看該作者
Gábor Tarcali,Gy?rgy J. K?vics,Emese Kissedges; or equivalently, there is an edge that crosses .(../..) other edges. We strengthen the Crossing Lemma for drawings in which any two edges cross in at most .(1) points..We prove for every . that every graph . with . vertices and .?≥?3. edges drawn in the plane such that any two edges intersect
36#
發(fā)表于 2025-3-27 19:16:53 | 只看該作者
Jhasketan Badhai,Sushanta Deb,Subrata K. Dasizing the odd crossing number of . that uses at most 9. crossings, where . is the odd crossing number of .. As a consequence of this and a result of Grohe we can show that the odd crossing number is fixed-parameter tractable.
37#
發(fā)表于 2025-3-27 22:40:44 | 只看該作者
The Evolution of Fungal Diversity,or any of the .! possible mappings. These graphs are equivalent to the set of unlabeled level planar (.) graphs that are level planar over all possible labelings. Our contributions are twofold. First, we provide linear time drawing algorithms for . graphs. Second, we provide a complete characterizat
38#
發(fā)表于 2025-3-28 04:50:02 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:55 | 只看該作者
40#
發(fā)表于 2025-3-28 12:02:53 | 只看該作者
Microbial Biosensors for Metal(loid)sng tree in the Euclidean plane. They derived area bounds of . for trees of height . and conjectured that an improvement below .. ×.. is not possible for some constant .?>?0. We partially disprove this conjecture by giving polynomial area bounds for arbitrary trees of maximal degree 3 and 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉沽区| 通山县| 贞丰县| 界首市| 平果县| 迁西县| 本溪| 沾化县| 建阳市| 澜沧| 连城县| 南投市| 内乡县| 河北区| 长汀县| 永和县| 垫江县| 怀安县| 海南省| 司法| 洛宁县| 阆中市| 军事| 扬州市| 韶山市| 绍兴县| 晋城| 南充市| 镇赉县| 晴隆县| 阿拉善盟| 黑山县| 民权县| 柳州市| 涿鹿县| 化德县| 高平市| 城市| 布尔津县| 长春市| 托里县|